M U-Net: Intestine Segmentation Using Multi-dimensional Features for Ileus Diagnosis Assistance

被引:0
|
作者
An, Qin [1 ]
Oda, Hirohisa [2 ]
Hayashi, Yuichiro [1 ]
Kitasaka, Takayuki [3 ]
Hinoki, Akinari [4 ]
Uchida, Hiroo [4 ]
Suzuki, Kojiro [5 ]
Takimoto, Aitaro [4 ]
Oda, Masahiro [1 ,6 ]
Mori, Kensaku [1 ,7 ,8 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[2] Univ Shizuoka, Sch Management & Informat, Shizuoka, Japan
[3] Aichi Inst Technol, Sch Informat Sci, Toyota, Japan
[4] Nagoya Univ, Grad Sch Med, Nagoya, Aichi, Japan
[5] Aichi Med Univ, Dept Radiol, Toyota, Japan
[6] Nagoya Univ, Strategy Off Informat & Communicat, Nagoya, Aichi, Japan
[7] Nagoya Univ, Ctr Informat Technol, Nagoya, Aichi, Japan
[8] Natl Inst Informat, Res Ctr Med Bigdata, Tokyo, Japan
来源
APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2023 | 2024年 / 14313卷
关键词
Intestine segmentation; Ileus; Computer-aided diagnosis; Sparse label;
D O I
10.1007/978-3-031-47076-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intestine is an essential digestive organ that can cause serious health problems once diseased. This paper proposes a method for intestine segmentation to intestine obstruction diagnosis assistance called multi-dimensional U-Net (M U-Net). We employ two encoders to extract features from two-dimensional (2D) CT slices and three-dimensional (3D) CT patches. These two encoders collaborate to enhance the segmentation accuracy of the model. Additionally, we incorporate deep supervision with the M U-Net to reduce the limitation of training with sparse label data sets. The experimental results demonstrated that the Dice of the proposed method was 73.22%, the recall was 79.89%, and the precision was 70.61%.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 50 条
  • [31] Medical ultrasound image segmentation using Multi-Residual U-Net architecture
    Shereena, V. B.
    Raju, G.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27067 - 27088
  • [32] Pelvis Segmentation Using Multi-pass U-Net and Iterative Shape Estimation
    Wang, Chunliang
    Connolly, Bryan
    Lopes, Pedro Filipe de Oliveira
    Frangi, Alejandro F.
    Smedby, Orjan
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS IN MUSCULOSKELETAL IMAGING, MSKI 2018, 2019, 11404 : 49 - 57
  • [33] Automatic calcaneus fracture identification and segmentation using a multi-task U-Net
    Mu, Yuxuan
    Xue, Dong
    Guo, Jia
    Xu, Hailin
    Wang, Wei
    Li, Huiqi
    2020 5TH INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2020), 2020, : 140 - 144
  • [34] DMU-Net: A Dual-Stream Multi-Scale U-Net Network Using Multi-Dimensional Spatial Information for Urban Building Extraction
    Li, Peihang
    Sun, Zhenhui
    Duan, Guangyao
    Wang, Dongchuan
    Meng, Qingyan
    Sun, Yunxiao
    SENSORS, 2023, 23 (04)
  • [35] Semantic segmentation of human cell nucleus using deep U-Net and other versions of U-Net models
    Yadavendra
    Chand, Satish
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2022, 33 (3-4) : 167 - 186
  • [36] Segmentation of Mammogram Images Using U-Net with Fusion of Channel and Spatial Attention Modules (U-Net CASAM)
    Robert Singh, A.
    Vidya, S.
    Hariharasitaraman, S.
    Athisayamani, Suganya
    Hsu, Fang Rong
    Lecture Notes in Networks and Systems, 2024, 966 LNNS : 435 - 448
  • [37] Intelligent assistance in diagnosis of multi-dimensional medical images
    Kobatake, Hidefumi
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2006, 1 : 1 - 3
  • [38] A New Segmentation Method to Preserve the Underlying Image Features: U-Net with Multi-scale Pooling
    Liu, Yuming
    Chen, Gongping
    Dai, Yu
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1718 - 1722
  • [39] An Improved Disc Segmentation Based on U-Net Architecture for Glaucoma Diagnosis
    Touahri R.
    Azizi N.
    Hammami N.E.
    Benaida F.
    Zemmal N.
    Gasmi I.
    International Journal of Ambient Computing and Intelligence, 2022, 13 (01)
  • [40] DCU-Net: Multi-scale U-Net for brain tumor segmentation
    Yang, Tiejun
    Zhou, Yudan
    Li, Lei
    Zhu, Chunhua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (04) : 709 - 726