M U-Net: Intestine Segmentation Using Multi-dimensional Features for Ileus Diagnosis Assistance

被引:0
|
作者
An, Qin [1 ]
Oda, Hirohisa [2 ]
Hayashi, Yuichiro [1 ]
Kitasaka, Takayuki [3 ]
Hinoki, Akinari [4 ]
Uchida, Hiroo [4 ]
Suzuki, Kojiro [5 ]
Takimoto, Aitaro [4 ]
Oda, Masahiro [1 ,6 ]
Mori, Kensaku [1 ,7 ,8 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[2] Univ Shizuoka, Sch Management & Informat, Shizuoka, Japan
[3] Aichi Inst Technol, Sch Informat Sci, Toyota, Japan
[4] Nagoya Univ, Grad Sch Med, Nagoya, Aichi, Japan
[5] Aichi Med Univ, Dept Radiol, Toyota, Japan
[6] Nagoya Univ, Strategy Off Informat & Communicat, Nagoya, Aichi, Japan
[7] Nagoya Univ, Ctr Informat Technol, Nagoya, Aichi, Japan
[8] Natl Inst Informat, Res Ctr Med Bigdata, Tokyo, Japan
来源
APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2023 | 2024年 / 14313卷
关键词
Intestine segmentation; Ileus; Computer-aided diagnosis; Sparse label;
D O I
10.1007/978-3-031-47076-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intestine is an essential digestive organ that can cause serious health problems once diseased. This paper proposes a method for intestine segmentation to intestine obstruction diagnosis assistance called multi-dimensional U-Net (M U-Net). We employ two encoders to extract features from two-dimensional (2D) CT slices and three-dimensional (3D) CT patches. These two encoders collaborate to enhance the segmentation accuracy of the model. Additionally, we incorporate deep supervision with the M U-Net to reduce the limitation of training with sparse label data sets. The experimental results demonstrated that the Dice of the proposed method was 73.22%, the recall was 79.89%, and the precision was 70.61%.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 50 条
  • [21] Skin Lesion Segmentation using Residual U-NET
    Manivannan, S.
    Venkateswaran, N.
    Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, SPIN 2023, 2023, : 405 - 409
  • [22] Segmentation of Additive Manufacturing Defects Using U-Net
    Vivian Wen Hui Wong
    Ferguson, Max
    Law, Kincho H.
    Yung-Tsun Tina Lee
    Witherell, Paul
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2022, 22 (03)
  • [23] Segmentation of Eczema Skin Lesions Using U-Net
    Nisar, Humaira
    Tan, Ysin Ren
    Ho, Yeap Kim
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 362 - 366
  • [24] Segmentation of Palm Vein Images Using U-Net
    Marattukalam, Felix
    Abdulla, Waleed H.
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 64 - 70
  • [25] Segmentation of the heart using a Residual U-net model
    Fernandes, M.
    Teuwen, J.
    Wijsman, R.
    Stam, B.
    Moriakov, N.
    Bussink, J.
    Monshouwer, R.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S970 - S970
  • [26] Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model
    Poonguzhali, R.
    Ahmad, Sultan
    Sivasankar, P. Thiruvannamalai
    Babu, S. Anantha
    Joshi, Pranav
    Joshi, Gyanendra Prasad
    Kim, Sung Won
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 2179 - 2194
  • [27] FU-Net: Multi-class Image Segmentation Using Feedback Weighted U-Net
    Jafari, Mina
    Li, Ruizhe
    Xing, Yue
    Auer, Dorothee
    Francis, Susan
    Garibaldi, Jonathan
    Chen, Xin
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 529 - 537
  • [28] MFA U-Net: a U-Net like multi-stage feature analysis network for medical image segmentation
    Wang, Yupeng
    Wang, Suyu
    He, Jian
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (04)
  • [29] How Few Annotations are Needed for Segmentation Using a Multi-planar U-Net?
    Laprade, William Michael
    Perslev, Mathias
    Sporring, Jon
    DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 209 - 216
  • [30] Medical ultrasound image segmentation using Multi-Residual U-Net architecture
    Shereena V. B.
    Raju G.
    Multimedia Tools and Applications, 2024, 83 (9) : 27067 - 27088