Microseismic Source Imaging Using Physics-Informed Neural Networks With Hard Constraints

被引:2
|
作者
Huang, Xinquan [1 ]
Alkhalifah, Tariq A. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
Imaging; Mathematical models; Frequency-domain analysis; Cause effect analysis; Artificial neural networks; Position measurement; Surface waves; Causality loss function; hard constraints; microseismic source imaging; physics-informed neural networks (PINNs); LOCATION; TIME; INVERSION; ALGORITHM;
D O I
10.1109/TGRS.2024.3366449
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Microseismic source imaging plays a significant role in passive seismic monitoring. However, such a process is prone to failure due to aliasing when dealing with sparsely measured data. Thus, we propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs), which can generate focused source images, even with very sparse recordings. We use the PINNs to represent a multifrequency wavefield and then apply inverse Fourier transform to extract the source image. To be more specific, we modify the representation of the frequency-domain wavefield to inherently satisfy the boundary conditions (the measured data on the surface) by means of a hard constraint, which helps to avoid the difficulty in balancing the data and partial differential equation (PDE) losses in PINNs. Furthermore, we propose the causality loss implementation with respect to depth to enhance the convergence of PINNs. The numerical experiments on the overthrust model show that the method can admit reliable and accurate source imaging for single or multiple sources and even in passive monitoring settings. Compared with the time-reversal method, the results of the proposed method are consistent with numerical methods but less noisy. Then, we further apply our method to hydraulic fracturing monitoring field data and demonstrate that our method can correctly image the source with fewer artifacts.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [22] Efficient physics-informed neural networks using hash encoding
    Huang, Xinquan
    Alkhalifah, Tariq
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [23] Solving the pulsar equation using physics-informed neural networks
    Stefanou, Petros
    Urban, Jorge F.
    Pons, Jose A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (01) : 1504 - 1511
  • [24] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [25] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [26] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [27] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [28] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [29] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [30] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425