Small-Constant Uniform Rectifiability

被引:0
|
作者
Jeznach, Cole [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Uniform rectifiability; Square function estimates; Chord-arc surfaces; FREE-BOUNDARY REGULARITY; CHORD ARC SURFACES; HARMONIC MEASURE; REIFENBERG FLAT; POISSON KERNELS; SPACES; SETS;
D O I
10.1007/s12220-024-01567-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several equivalent characterizations of locally flat, d-Ahlfors regular, uniformly rectifiable sets E in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>n$$\end{document} with density close to 1 for any dimension d is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in {\mathbb {N}}$$\end{document}, 1 <= d<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le d < n$$\end{document}. In particular, we show that when E is Reifenberg flat with small constant and has Ahlfors regularity constant close to 1, then the Tolsa alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} coefficients associated to E satisfy a small-constant Carleson measure estimate. This estimate is new, even when d=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d= n-1$$\end{document}, and gives a new characterization of chord-arc domains with small constant.
引用
收藏
页数:44
相关论文
共 50 条
  • [31] UNIFORM RECTIFIABILITY AND ELLIPTIC OPERATORS SATISFYING A CARLESON MEASURE CONDITION
    Hofmann, Steve
    Maria Martell, Jose
    Mayboroda, Svitlana
    Toro, Tatiana
    Zhao, Zihui
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (02) : 325 - 401
  • [32] Uniform Rectifiability and Elliptic Operators Satisfying a Carleson Measure Condition
    Steve Hofmann
    José María Martell
    Svitlana Mayboroda
    Tatiana Toro
    Zihui Zhao
    Geometric and Functional Analysis, 2021, 31 : 325 - 401
  • [33] UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION OF HARMONIC FUNCTIONS
    Hofmann, Steve
    Maria Martell, Jose
    Mayboroda, Svitlana
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (12) : 2331 - 2389
  • [34] Carnot rectifiability of sub-Riemannian manifolds with constant tangent
    Le Donne, Enrico
    Young, Robert
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (01) : 71 - 96
  • [35] Uniform rectifiability, Calderon-Zygmund operators with odd kernel, and quasiorthogonality
    Tolsa, Xavier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 : 393 - 426
  • [36] Reflectionless Measures and the Mattila-Melnikov-Verdera Uniform Rectifiability Theorem
    Jaye, Benjamin
    Nazarov, Fedor
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 199 - 229
  • [37] UNIFORM RECTIFIABILITY FROM CARLESON MEASURE ESTIMATES AND ε-APPROXIMABILITY OF BOUNDED HARMONIC FUNCTIONS
    Garnett, John
    Mourgoglou, Mihalis
    Tolsa, Xavier
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (08) : 1473 - 1524
  • [38] A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE AND UNIFORM RECTIFIABILITY
    Azzam, Jonas
    Mourgoglou, Mihalis
    Tolsa, Xavier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 4359 - 4388
  • [39] On symmetry and uniform rectifiability arising from some overdetermined elliptic and parabolic boundary conditions
    Lewis, JL
    P-HARMONIC EQUATION AND RECENT ADVANCES IN ANALYSIS, 2005, 370 : 175 - 187
  • [40] L2-BOUNDEDNESS OF GRADIENTS OF SINGLE-LAYER POTENTIALS AND UNIFORM RECTIFIABILITY
    Prat, Laura
    Puliatti, Carmelo
    Tolsa, Xavier
    ANALYSIS & PDE, 2021, 14 (03): : 717 - 791