Cas9 degradation in human cells using phage anti-CRISPR proteins

被引:1
|
作者
Meacham, Zuriah [1 ]
de Tacca, Luisa Arake [1 ]
Bondy-Denomy, Joseph [2 ]
Rabuka, David [1 ]
Schelle, Michael [1 ]
机构
[1] Acrigen Biosci Inc, Alameda, CA 94501 USA
[2] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA USA
关键词
BACTERIOPHAGE; INHIBITION; DNA;
D O I
10.1371/journal.pbio.3002431
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteriophages encode anti-CRISPR (Acr) proteins that inactivate CRISPR-Cas bacterial immune systems, allowing successful invasion, replication, and prophage integration. Acr proteins inhibit CRISPR-Cas systems using a wide variety of mechanisms. AcrIIA1 is encoded by numerous phages and plasmids, binds specifically to the Cas9 HNH domain, and was the first Acr discovered to inhibit SpyCas9. Here, we report the observation of AcrIIA1-induced degradation of SpyCas9 and SauCas9 in human cell culture, the first example of Acr-induced degradation of CRISPR-Cas nucleases in human cells. AcrIIA1-induced degradation of SpyCas9 is abolished by mutations in AcrIIA1 that break a direct physical interaction between the 2 proteins. Targeted Cas9 protein degradation by AcrIIA1 could modulate Cas9 nuclease activity in human therapies. The small size and specificity of AcrIIA1 could be used in a CRISPR-Cas proteolysis-targeting chimera (PROTAC), providing a tool for developing safe and precise gene editing applications. Bacteriophages encode anti-CRISPR proteins that inactivate CRISPR-Cas bacterial immune systems, allowing successful invasion, replication, and prophage integration. This study shows that the anti-CRISPR protein AcrIIA1 induces degradation of Cas9 in human cells.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
    Bondy-Denomy, Joseph
    Garcia, Bianca
    Strum, Scott
    Du, Mingjian
    Rollins, MaryClare F.
    Hidalgo-Reyes, Yurima
    Wiedenheft, Blake
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE, 2015, 526 (7571) : 136 - +
  • [22] Muscle-Specific Editing in a Therapeutic Target of Duchenne Muscular Dystrophy Using Cas9 and miRNA-Repressible Anti-CRISPR Proteins
    Lee, Jooyoung
    Wang, Jiayi
    Pero, Cole
    Xue, Wen
    Sontheimer, Erik J.
    MOLECULAR THERAPY, 2020, 28 (04) : 229 - 229
  • [23] HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells
    Li, Chang
    Psatha, Nikoletta
    Gil, Sucheol
    Wang, Hongjie
    Papayannopoulou, Thalia
    Lieber, Andre
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 9 : 390 - 401
  • [24] HDAd5/35++ Vector Expressing Anti-CRISPR Peptides Controls the Duration of CRISPR/Cas9 Activity and Decreases CRISPR/Cas9-Associated Toxicity in Human Hematopoietic Stem Cells
    Li, Chang
    Psatha, Nikoletta
    Gil, Sucheol
    Lieber, Andre
    MOLECULAR THERAPY, 2018, 26 (05) : 227 - 227
  • [25] Genome Engineering of Primary Human B Cells Using CRISPR/Cas9
    Laoharawee, Kanut
    Johnson, Matthew J.
    Lahr, Walker S.
    Peterson, Joseph J.
    Webber, Beau R.
    Moriarity, Branden S.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (165):
  • [26] Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins
    Zhang, Heng
    Li, Zhuang
    Daczkowski, Courtney M.
    Gabel, Clinton
    Mesecar, Andrew D.
    Chang, Leifu
    CELL HOST & MICROBE, 2019, 25 (06) : 815 - +
  • [27] Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system
    Chaudhary, Kulbhushan
    Chattopadhyay, Anirudha
    Pratap, Dharmendra
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (01) : 57 - 59
  • [28] Modulation of snoRNA activity in human cells using CRISPR/Cas9 tools
    Filippova, I.
    Matveeva, A.
    Juravlev, E.
    Richter, V.
    Semenov, D.
    Stepanov, G.
    FEBS OPEN BIO, 2019, 9 : 397 - 397
  • [29] Using CRISPR/Cas9 to model human liver disease
    Alves-Bezerra, Michele
    Furey, Nika
    Johnson, Collin G.
    Bissig, Karl-Dimiter
    JHEP REPORTS, 2019, 1 (05) : 392 - 402
  • [30] CRISPR/Cas9
    杨丽
    中南医学科学杂志, 2016, 44 (05) : 585 - 585