Chondrocytes supplemented to bone graft-containing scaffolds expedite cranial defect repair

被引:1
|
作者
Carmon, Idan [1 ]
Zobrab, Anna [1 ]
Alterman, Michael [2 ]
Tabib, Rami [2 ]
Cohen, Adir [2 ]
Kandel, Leonid [3 ]
Greenberg, Alexander [3 ]
Reich, Eli [1 ]
Casap, Nardi [2 ]
Dvir-Ginzberg, Mona [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Biomed & Oral Res, Fac Dent Med, Lab Cartilage Biol, Jerusalem, Israel
[2] Hadassah Hebrew Univ, Fac Dent Med, Dept Maxillofacial Surg, POB 12272, IL-9112102 Jerusalem, Israel
[3] Hadassah Hebrew Univ, Joint Replacement & Reconstruct Unit, Orthoped Surg Complex, Med Ctr Mt Scopus, Jerusalem, Israel
关键词
TURNOVER MARKERS; ALLOGRAFT; DIAGNOSIS;
D O I
10.1038/s41598-023-46604-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Critical maxillofacial bone fractures do not heal spontaneously, thus, often there is a need to facilitate repair via surgical intervention. Gold standard approaches, include the use of autologous bone graft, or devices supplemented with osteogenic growth factors and bone substitutes. This research aimed to employ a critical size calvaria defect model, to determine if the addition of chondrocytes to collagen-containing bone graft substitute, may expedite bone repair. As such, using a critical size rat calvaria defect, we implanted a collagen scaffold containing bone graft substitute (i.e., Bone graft scaffold, BG) or BG supplemented with costal chondrocytes (cBG). The rats were subjected to live CT imaging at 1, 6, 9, and 12 weeks following the surgical procedure and sacrificed for microCT imaging of the defect site. Moreover, serum markers and histological evaluation were assessed to determine osseous tissue regeneration and turnover. Live CT and microCT indicated cBG implants displayed expedited bone repair vs, BG alone, already at 6 weeks post defect induction. cBG also displayed a shorter distance between the defect edges and greater mineral apposition distance compared to BG. Summerizing, the data support the addition of chondrocytes to bone substitute, accelerates the formation of new bone within a critical size defect.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair
    Huang, Chunlan
    Ness, Vincent P.
    Yang, Xiaochuan
    Chen, Hongli
    Luo, Jiebo
    Brown, Edward B.
    Zhang, Xinping
    JOURNAL OF BONE AND MINERAL RESEARCH, 2015, 30 (07) : 1217 - 1230
  • [32] InjectableBMP-2gene-activated scaffold for the repair of cranial bone defect in mice
    Sun, Kai
    Lin, Hang
    Tang, Ying
    Xiang, Shiqi
    Xue, Jingwen
    Yin, Weifeng
    Tan, Jian
    Peng, Hao
    Alexander, Peter G.
    Tuan, Rocky S.
    Wang, Bing
    STEM CELLS TRANSLATIONAL MEDICINE, 2020, 9 (12) : 1631 - 1642
  • [33] Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model
    Dahlin, Rebecca L.
    Kinard, Lucas A.
    Lam, Johnny
    Needham, Clark J.
    Lu, Steven
    Kasper, F. Kurtis
    Mikos, Antonios G.
    BIOMATERIALS, 2014, 35 (26) : 7460 - 7469
  • [34] A New Graft Material for Mandibular Bone Defect Repair Using Regenerative Bone from Periosteum
    Mashimo, Takayuki
    Saito, Tadahito
    Shiratsuchi, Hiroshi
    Iwata, Jun
    Uryu, Takeshi
    Tamagawa, Takaaki
    Yasumitsu, Tomohiro
    Namaki, Shunsuke
    Matsumoto, Kunihito
    Mori, Yoshiyuki
    Arai, Yoshinori
    Honda, Kazuya
    Yonehara, Yoshiyuki
    JOURNAL OF HARD TISSUE BIOLOGY, 2014, 23 (01) : 45 - 53
  • [35] Study on Adulterate Sodium Silica Apatite Cement Porous Scaffolds for Bone Defect Repair
    Cao Lie-Hui
    Yu Bao-Qing
    Wu Guo-Sheng
    Su Jia-Can
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (06) : 591 - 596
  • [36] Research progress on hydroxyapatite/graphene oxide composite scaffolds in the treatment of bone defect repair
    Yang N.
    He X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (01): : 38 - 49
  • [37] Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair
    Wojtowicz, Abigail M.
    Shekaran, Asha
    Oest, Megan E.
    Dupont, Kenneth M.
    Templeman, Kellie L.
    Hutmacher, Dietmar W.
    Guldberg, Robert E.
    Garcia, Andres J.
    BIOMATERIALS, 2010, 31 (09) : 2574 - 2582
  • [38] Application of Tantalum-Containing Chitosan Scaffolds for the Repair of Osteoporotic Bone Defects
    Wang, An
    Lin, Wenbo
    Ma, Jun
    Shi, Liangyu
    Wang, Weiheng
    He, Yunfei
    Wang, Yang
    Chen, Huajiang
    Ye, Xiaojian
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (08) : 1179 - 1189
  • [39] Development of Mg-containing porous β-tricalcium phosphate scaffolds for bone repair
    Salma-Ancane, Kristine
    Stipniece, Liga
    Putnins, Andris
    Berzina-Cimdina, Liga
    CERAMICS INTERNATIONAL, 2015, 41 (03) : 4996 - 5004
  • [40] THE EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON beta-TCP GRAFT IN RABBIT CRANIAL BONE DEFECT
    Kim, Sang-Woo
    Hwang, Kyung-Gyun
    Lim, Byung-Sup
    Park, Chang-Joo
    Chung, Il-Hyuk
    Paik, Seung-Sam
    Shim, Kwang-Sup
    JOURNAL OF THE KOREAN ASSOCIATION OF ORAL AND MAXILLOFACIAL SURGEONS, 2006, 32 (04) : 360 - 373