Classifying a Highly Polymorphic Tree Species across Landscapes Using Airborne Imaging Spectroscopy

被引:3
|
作者
Seeley, Megan M. [1 ,2 ]
Vaughn, Nicholas R. [1 ]
Shanks, Brennon L. [3 ]
Martin, Roberta E. [1 ,4 ]
Konig, Marcel [1 ]
Asner, Gregory P. [1 ,2 ,4 ]
机构
[1] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Hilo, HI 96720 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85281 USA
[3] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[4] Arizona State Univ, Sch Ocean Futures, Hilo, HI 96720 USA
关键词
imaging spectroscopy; Metrosideros polymorpha; species classification; support vector machine; SMA; Gaussian process classification; METROSIDEROS-POLYMORPHA; ENVIRONMENTAL GRADIENTS; SPATIAL-RESOLUTION; HAWAII ISLAND; CLASSIFICATION; FOREST; IMAGES;
D O I
10.3390/rs15184365
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation classifications on large geographic scales are necessary to inform conservation decisions and monitor keystone, invasive, and endangered species. These classifications are often effectively achieved by applying models to imaging spectroscopy, a type of remote sensing data, but such undertakings are often limited in spatial extent. Here we provide accurate, high-resolution spatial data on the keystone species Metrosideros polymorpha, a highly polymorphic tree species distributed across bioclimatic zones and environmental gradients on Hawai'i Island using airborne imaging spectroscopy and LiDAR. We compare two tree species classification techniques, the support vector machine (SVM) and spectral mixture analysis (SMA), to assess their ability to map M. polymorpha over 28,000 square kilometers where differences in topography, background vegetation, sun angle relative to the aircraft, and day of data collection, among others, challenge accurate classification. To capture spatial variability in model performance, we applied Gaussian process classification (GPC) to estimate the spatial probability density of M. polymorpha occurrence using only training sample locations. We found that while SVM and SMA models exhibit similar raw score accuracy over the test set (96.0% and 93.4%, respectively), SVM better reproduces the spatial distribution of M. polymorpha than SMA. We developed a final 2 m x 2 m M. polymorpha presence dataset and a 30 m x 30 m M. polymorpha density dataset using SVM classifications that have been made publicly available for use in conservation applications. Accurate, large-scale species classifications are achievable, but metrics for model performance assessments must account for spatial variation of model accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An evaluation of bi-directional models using airborne imaging spectroscopy
    Debruyn, W
    Eerens, H
    Gond, V
    Verheijen, Y
    Wouters, K
    Veroustraete, F
    FOREST ECOSYSTEM MODELLING, UPSCALING AND REMOTE SENSING, 1999, : 235 - 242
  • [42] Drought response of urban trees and turfgrass using airborne imaging spectroscopy
    Miller, David L.
    Alonzo, Michael
    Roberts, Dar A.
    Tague, Christina L.
    McFadden, Joseph P.
    REMOTE SENSING OF ENVIRONMENT, 2020, 240 (240)
  • [43] Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits
    Gholizadeh, Hamed
    Friedman, Michael S.
    McMillan, Nicholas A.
    Hammond, William M.
    Hassani, Kianoosh
    Sams, Aisha, V
    Charles, Makyla D.
    Garrett, DeAndre R.
    Joshi, Omkar
    Hamilton, Robert G.
    Fuhlendorf, Samuel D.
    Trowbridge, Amy M.
    Adams, Henry D.
    REMOTE SENSING OF ENVIRONMENT, 2022, 271
  • [44] Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities
    Draper, Frederick C.
    Baraloto, Christopher
    Brodrick, Philip G.
    Phillips, Oliver L.
    Vasquez Martinez, Rodolfo
    Honorio Coronado, Euridice N.
    Baker, Timothy R.
    Zarate Gomez, Ricardo
    Amasifuen Guerra, Carlos A.
    Flores, Manuel
    Villacorta, Roosevelt Garcia
    Fine, Paul V. A.
    Freitas, Luis
    Monteagudo-Mendoza, Abel
    Brienen, Roel J. W.
    Asner, Gregory P.
    JOURNAL OF ECOLOGY, 2019, 107 (02) : 696 - 710
  • [45] Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements
    Meng, Ran
    Dennison, Philip E.
    Zhao, Feng
    Shendryk, Iurii
    Rickert, Amanda
    Hanavan, Ryan P.
    Cook, Bruce D.
    Serbin, Shawn P.
    REMOTE SENSING OF ENVIRONMENT, 2018, 215 : 170 - 183
  • [46] Classifying tree species in a northern mixed forest using high-resolution IKONOS data
    Katoh, Masato
    JOURNAL OF FOREST RESEARCH, 2004, 9 (01) : 7 - 14
  • [47] Individual Tree Species Classification From Airborne Multisensor Imagery Using Robust PCA
    Lee, Juheon
    Cai, Xiaohao
    Lellmann, Jan
    Dalponte, Michele
    Malhi, Yadvinder
    Butt, Nathalie
    Morecroft, Mike
    Schonlieb, Carola-Bibiane
    Coomes, David A.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2554 - 2567
  • [48] Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar
    Vaughn, Nicholas R.
    Moskal, L. Monika
    Turnblom, Eric C.
    REMOTE SENSING, 2012, 4 (02) : 377 - 403
  • [49] Predicting the plot volume by tree species using airborne laser scanning and aerial photographs
    Packalen, Petteri
    Maltamo, Matti
    FOREST SCIENCE, 2006, 52 (06) : 611 - 622
  • [50] Airborne hyperspectral discrimination of tree species with different ages using discrete wavelet transform
    Ghiyamat, A.
    Shafri, H. Z. M.
    Mahdiraji, G. A.
    Ashurov, R.
    Shariff, A. R. M.
    Mansor, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (01) : 318 - 342