Classifying a Highly Polymorphic Tree Species across Landscapes Using Airborne Imaging Spectroscopy

被引:3
|
作者
Seeley, Megan M. [1 ,2 ]
Vaughn, Nicholas R. [1 ]
Shanks, Brennon L. [3 ]
Martin, Roberta E. [1 ,4 ]
Konig, Marcel [1 ]
Asner, Gregory P. [1 ,2 ,4 ]
机构
[1] Arizona State Univ, Ctr Global Discovery & Conservat Sci, Hilo, HI 96720 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85281 USA
[3] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[4] Arizona State Univ, Sch Ocean Futures, Hilo, HI 96720 USA
关键词
imaging spectroscopy; Metrosideros polymorpha; species classification; support vector machine; SMA; Gaussian process classification; METROSIDEROS-POLYMORPHA; ENVIRONMENTAL GRADIENTS; SPATIAL-RESOLUTION; HAWAII ISLAND; CLASSIFICATION; FOREST; IMAGES;
D O I
10.3390/rs15184365
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation classifications on large geographic scales are necessary to inform conservation decisions and monitor keystone, invasive, and endangered species. These classifications are often effectively achieved by applying models to imaging spectroscopy, a type of remote sensing data, but such undertakings are often limited in spatial extent. Here we provide accurate, high-resolution spatial data on the keystone species Metrosideros polymorpha, a highly polymorphic tree species distributed across bioclimatic zones and environmental gradients on Hawai'i Island using airborne imaging spectroscopy and LiDAR. We compare two tree species classification techniques, the support vector machine (SVM) and spectral mixture analysis (SMA), to assess their ability to map M. polymorpha over 28,000 square kilometers where differences in topography, background vegetation, sun angle relative to the aircraft, and day of data collection, among others, challenge accurate classification. To capture spatial variability in model performance, we applied Gaussian process classification (GPC) to estimate the spatial probability density of M. polymorpha occurrence using only training sample locations. We found that while SVM and SMA models exhibit similar raw score accuracy over the test set (96.0% and 93.4%, respectively), SVM better reproduces the spatial distribution of M. polymorpha than SMA. We developed a final 2 m x 2 m M. polymorpha presence dataset and a 30 m x 30 m M. polymorpha density dataset using SVM classifications that have been made publicly available for use in conservation applications. Accurate, large-scale species classifications are achievable, but metrics for model performance assessments must account for spatial variation of model accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Using FTIR spectroscopy and chemometrics for classifying of algerian medicinal plant species
    Zeghoud S.
    Hemmami H.
    Rebiai A.
    Ben Seghir B.
    Vegetos, 2022, 35 (2): : 298 - 305
  • [22] Estimating plant β-diversity using airborne and spaceborne imaging spectroscopy
    Kamaraj, Nivedita Priyadarshini
    Gholizadeh, Hamed
    Hamilton, Robert G.
    Fuhlendorf, Samuel D.
    Gamon, John A.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024,
  • [23] Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data
    Dian, Yuanyong
    Pang, Yong
    Dong, Yanfang
    Li, Zengyuan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2016, 44 (04) : 595 - 603
  • [24] An evaluation of bidirectional models using airborne imaging spectroscopy.
    Debruyn, W
    Eerens, H
    Verheijen, Y
    Veroustraete, F
    1ST EARSEL WORKSHOP ON IMAGING SPECTROSCOPY, 1998, : 129 - 136
  • [25] TREE SPECIES DISCRIMINATION USING CONTINUUM REMOVED AIRBORNE HYPERSPECTRAL DATA
    Odagawa, Shinya
    Okada, Kinya
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 243 - 246
  • [26] Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data
    Yuanyong Dian
    Yong Pang
    Yanfang Dong
    Zengyuan Li
    Journal of the Indian Society of Remote Sensing, 2016, 44 : 595 - 603
  • [27] Microhaplotype genotyping-by-sequencing of 98 highly polymorphic markers in three chestnut tree species
    Laurent, Benoit
    Larue, Clement
    Chancerel, Emilie
    Guichoux, Erwan
    Petit, Remy J.
    Barreneche, Teresa
    Robin, Cecile
    Lepais, Olivier
    CONSERVATION GENETICS RESOURCES, 2020, 12 (04) : 567 - 580
  • [28] Microhaplotype genotyping-by-sequencing of 98 highly polymorphic markers in three chestnut tree species
    Benoit Laurent
    Clément Larue
    Emilie Chancerel
    Erwan Guichoux
    Rémy J. Petit
    Teresa Barreneche
    Cécile Robin
    Olivier Lepais
    Conservation Genetics Resources, 2020, 12 : 567 - 580
  • [29] Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data
    Maschler, Julia
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2018, 10 (08)
  • [30] Using airborne and DESIS imaging spectroscopy to map plant diversity across the largest contiguous tract of tallgrass prairie on earth
    Gholizadeh, Hamed
    Dixon, Adam P.
    Pan, Kimberly H.
    McMillan, Nicholas A.
    Hamilton, Robert G.
    Fuhlendorf, Samuel D.
    Cavender-Bares, Jeannine
    Gamon, John A.
    REMOTE SENSING OF ENVIRONMENT, 2022, 281