Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation

被引:19
|
作者
Lin, Yunzhi [1 ,2 ]
Mueller, Thomas [1 ]
Tremblay, Jonathan [1 ]
Wen, Bowen [1 ]
Tyree, Stephen [1 ]
Evans, Alex [1 ]
Vela, Patricio A. [2 ]
Birchfield, Stan [1 ]
机构
[1] NVIDIA, Santa Clara, CA 95051 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.1109/ICRA48891.2023.10161117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6DoF pose of a camera with respect to an object or scene. Given a single observed RGB image of the target, we can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image. We integrate a momentum-based camera extrinsic optimization procedure into Instant Neural Graphics Primitives, a recent exceptionally fast NeRF implementation. By introducing parallel Monte Carlo sampling into the pose estimation task, our method overcomes local minima and improves efficiency in a more extensive search space. We also show the importance of adopting a more robust pixel-based loss function to reduce error. Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.
引用
收藏
页码:9377 / 9384
页数:8
相关论文
共 50 条
  • [31] Convolutional Neural Opacity Radiance Fields
    Luo, Haimin
    Chen, Anpei
    Zhang, Qixuan
    Pang, Bai
    Wu, Minye
    Xu, Lan
    Yu, Jingyi
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2021,
  • [32] Robust Optimal Pose Estimation
    Enqvist, Olof
    Kahl, Fredrik
    COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 141 - 153
  • [33] Disentangled Generation and Aggregation for Robust Radiance Fields
    Shen, Shihe
    Gao, Huachen
    Xu, Wangze
    Peng, Rui
    Tang, Luyang
    Xiong, Kaiqiang
    Jiao, Jianbo
    Wang, Ronggang
    COMPUTER VISION - ECCV 2024, PT XLIX, 2025, 15107 : 218 - 236
  • [34] DroNeRF: Real-time Multi-agent Drone Pose Optimization for Computing Neural Radiance Fields
    Patel, Dipam
    Phu Pham
    Bera, Aniket
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 5050 - 5055
  • [35] FDC-NERF: LEARNING POSE-FREE NEURAL RADIANCE FIELDS WITH FLOW-DEPTH CONSISTENCY
    Gao, Huachen
    Shen, Shihe
    Zhang, Zhe
    Xiong, Kaiqiang
    Peng, Rui
    Gao, Zhirui
    Wang, Qi
    Xie, Yugui
    Wang, Ronggang
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3615 - 3619
  • [36] DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields
    Schischka, Nicolas
    Schieber, Hannah
    Karaoglu, Mert Asim
    Gorgulu, Melih
    Groetzner, Florian
    Ladikos, Alexander
    Navab, Nassir
    Roth, Daniel
    Busam, Benjamin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 548 - 555
  • [37] Learning Robust Multi-scale Representation for Neural Radiance Fields from Unposed Images
    Jain, Nishant
    Kumar, Suryansh
    Van Gool, Luc
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (04) : 1310 - 1335
  • [38] Learning Robust Multi-scale Representation for Neural Radiance Fields from Unposed Images
    Nishant Jain
    Suryansh Kumar
    Luc Van Gool
    International Journal of Computer Vision, 2024, 132 : 1310 - 1335
  • [39] Eigengrasp-Conditioned Neural Radiance Fields
    Aizawa, Hiroaki
    Naramura, Itoshi
    IEEE ACCESS, 2023, 11 : 121629 - 121636
  • [40] DDNeRF: Depth Distribution Neural Radiance Fields
    Dadon, David
    Fried, Ohad
    Hel-Or, Yacov
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 755 - 763