Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation

被引:19
|
作者
Lin, Yunzhi [1 ,2 ]
Mueller, Thomas [1 ]
Tremblay, Jonathan [1 ]
Wen, Bowen [1 ]
Tyree, Stephen [1 ]
Evans, Alex [1 ]
Vela, Patricio A. [2 ]
Birchfield, Stan [1 ]
机构
[1] NVIDIA, Santa Clara, CA 95051 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.1109/ICRA48891.2023.10161117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6DoF pose of a camera with respect to an object or scene. Given a single observed RGB image of the target, we can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image. We integrate a momentum-based camera extrinsic optimization procedure into Instant Neural Graphics Primitives, a recent exceptionally fast NeRF implementation. By introducing parallel Monte Carlo sampling into the pose estimation task, our method overcomes local minima and improves efficiency in a more extensive search space. We also show the importance of adopting a more robust pixel-based loss function to reduce error. Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.
引用
收藏
页码:9377 / 9384
页数:8
相关论文
共 50 条
  • [21] Neural Radiance Fields with LiDAR Maps
    Chang, Ming-Fang
    Sharma, Akash
    Kaess, Michael
    Lucey, Simon
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17868 - 17877
  • [22] Locally Stylized Neural Radiance Fields
    Pang, Hong-Wing
    Hua, Binh-Son
    Yeung, Sai-Kit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 307 - 316
  • [23] CoNeRF: Controllable Neural Radiance Fields
    Kania, Kacper
    Yi, Kwang Moo
    Kowalski, Marek
    Trzciniski, Tomasz
    Tagliasacchi, Andrea
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18602 - 18611
  • [24] Generative Neural Articulated Radiance Fields
    Bergman, Alexander W.
    Kellnhofer, Petr
    Wang Yifan
    Chan, Eric R.
    Lindell, David B.
    Wetzstein, Gordon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Hallucinated Neural Radiance Fields in the Wild
    Chen, Xingyu
    Zhang, Qi
    Li, Xiaoyu
    Chen, Yue
    Feng, Ying
    Wang, Xuan
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12933 - 12942
  • [26] PyNeRF: Pyramidal Neural Radiance Fields
    Turki, Haithem
    Zollhofer, Michael
    Richardt, Christian
    Ramanan, Deva
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Neural Radiance Fields Explode on the Scene
    Dellaert, Frank
    COMMUNICATIONS OF THE ACM, 2022, 65 (01) : 98 - 98
  • [28] Reinforcement Learning with Neural Radiance Fields
    Driess, Danny
    Schubert, Ingmar
    Florence, Pete
    Li, Yunzhu
    Toussaint, Marc
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [29] EfficientNeRF - Efficient Neural Radiance Fields
    Hu, Tao
    Liu, Shu
    Chen, Yilun
    Shen, Tiancheng
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12892 - 12901
  • [30] Nerfies: Deformable Neural Radiance Fields
    Park, Keunhong
    Sinha, Utkarsh
    Barron, Jonathan T.
    Bouaziz, Sofien
    Goldman, Dan B.
    Seitz, Steven M.
    Martin-Brualla, Ricardo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5845 - 5854