Multiscale Architectured Membranes, Electrodes, and Transport Layers for Next-Generation Polymer Electrolyte Membrane Fuel Cells

被引:23
|
作者
Jang, Segeun [1 ]
Kang, Yun Sik [2 ]
Kim, Dohoon [1 ]
Park, Subin [3 ]
Seol, Changwook [4 ]
Lee, Sungchul [5 ]
Kim, Sang Moon [4 ]
Yoo, Sung Jong [3 ,6 ,7 ]
机构
[1] Kookmin Univ, Sch Mech Engn, Seoul 02707, South Korea
[2] Korea Inst Energy Res KIER, Fuel Cell Lab, Daejeon 34129, South Korea
[3] Korea Inst Sci & Technol KIST, Hydrogen & Fuel Cell Res, Seoul 02792, South Korea
[4] Incheon Natl Univ, Dept Mech Engn, Incheon 22012, South Korea
[5] Hyundai Mobis Co Ltd, Fuel Cell Core Parts Dev Cell, Uiwang 16082, South Korea
[6] Kyung Hee Univ, KHU KIST Dept Converging Sci & Technol, 26 Kyungheedae Ro, Seoul 02447, South Korea
[7] Univ Sci & Technol UST, KIST Sch, Div Energy & Environm Technol, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
electrodes; membranes; multiscale architecturing; polymer electrolyte membrane fuel cells; transport layers; GAS-DIFFUSION LAYER; ULTRATHIN CATALYST LAYER; OXYGEN REDUCTION; NANOTUBE ARRAYS; MASS-TRANSPORT; PATTERNED WETTABILITY; FACILE PREPARATION; WATER MANAGEMENT; NAFION MEMBRANES; BIPOLAR PLATES;
D O I
10.1002/adma.202204902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over the past few decades, considerable advances have been achieved in polymer electrolyte membrane fuel cells (PEMFCs) based on the development of material technology. Recently, an emerging multiscale architecturing technology covering nanometer, micrometer, and millimeter scales has been regarded as an alternative strategy to overcome the hindrance to achieving high-performance and reliable PEMFCs. This review summarizes the recent progress in the key components of PEMFCs based on a novel architecture strategy. In the first section, diverse architectural methods for patterning the membrane surface with random, single-scale, and multiscale structures as well as their efficacy for improving catalyst utilization, charge transport, and water management are discussed. In the subsequent section, the electrode structures designed with 1D and 3D multiscale structures to enable low Pt usage, improve oxygen transport, and achieve high electrode durability are elucidated. Finally, recent advances in the architectured transport layer for improving mass transportation including pore gradient, perforation, and patterned wettability for gas diffusion layer and 3D structured/engineered flow fields are described.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells
    Zhou, Tianchi
    Shao, Rong
    Chen, Song
    He, Xuemei
    Qiao, Jinli
    Zhang, Jiujun
    JOURNAL OF POWER SOURCES, 2015, 293 : 946 - 975
  • [22] Experimental Determination of Water Transport in Polymer Electrolyte Membrane Fuel Cells
    Yau, Tak Cheung
    Sauriol, Pierre
    Bi, Xiaotao T.
    Stumper, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (09) : B1310 - B1320
  • [23] Performance and water transport behaviour in Polymer Electrolyte Membrane fuel cells
    Azam, Adam Mohd Izhan Noor
    Choon, Pua Mei
    Masdar, Mohd Shahbudin
    Zainoodin, Azran Mohd
    Husaini, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (96) : 40803 - 40813
  • [24] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    AFINIDAD, 2011, 68 (554) : 246 - 258
  • [25] Effects of Silicotungstic Acid Addition to the Electrodes of Polymer Electrolyte Membrane Fuel Cells
    Brooker, R. Paul
    Baker, Phillip
    Kunz, H. Russell
    Bonville, Leonard J.
    Parnas, Richard
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (11) : B1317 - B1321
  • [26] Hybrid Polymer Electrolyte Fuel Cells: Alkaline Electrodes with Proton Conducting Membrane
    Unlu, Murat
    Zhou, Junfeng
    Kohl, Paul A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (07) : 1299 - 1301
  • [27] Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells
    Martin, S.
    Li, Q.
    Steenberg, T.
    Jensen, J. O.
    JOURNAL OF POWER SOURCES, 2014, 272 : 559 - 566
  • [28] Structured Multilayer Electrodes without Nafion® for Polymer Electrolyte Membrane Fuel Cells
    Zils, S.
    Wolz, A.
    Michel, M.
    Roth, C.
    ADVANCED ORGANIC AND INORGANIC MATERIALS FOR ELECTROCHEMICAL POWER SOURCES, 2010, 28 (08): : 33 - 42
  • [29] Alkaline Electrolytes and Reference Electrodes for Alkaline Polymer Electrolyte Membrane Fuel Cells
    Kizewski, J. P.
    Mudri, N. H.
    Zeng, R.
    Poynton, S. D.
    Slade, R. C. T.
    Varcoe, J. R.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 27 - 35
  • [30] Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells
    Yoonho So
    Hongnyoung Yoo
    Jaeyeon Kim
    Obeen Kwon
    Seokhun Jeong
    Heesoo Choi
    Hyeonjin Cha
    Taehyun Park
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1007 - 1014