Exponential Fermi Acceleration in a Switching Billiard

被引:0
|
作者
Karagulyan, Davit [1 ]
Zhou, Jing [2 ]
机构
[1] Royal Inst Technol, Dept Math, Stockholm, Sweden
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
INSTABILITY; STABILITY; SYSTEMS;
D O I
10.1007/s00220-022-04505-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show the existence of an infinite measure set of exponentially escaping orbits for a resonant Fermi accelerator, which is realised as a square billiard with a periodically oscillating platform. We use normal forms to describe the energy change in a period and employ techniques from the theory of hyperbolic systems with singularities to show the exponential drift given by these normal forms on a divided time-energy phase.
引用
收藏
页码:901 / 935
页数:35
相关论文
共 50 条
  • [41] ON HIGH FLYERS IN FERMI ACCELERATION
    BALL, L
    MELROSE, DB
    NORMAN, CA
    ASTROPHYSICAL JOURNAL, 1992, 398 (01): : L65 - L67
  • [42] PROPERTIES OF FERMI ACCELERATION MAPPINGS
    LICHTENBERG, AJ
    LIEBERMAN, MA
    COHEN, RH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 987 - 987
  • [43] Fermi Acceleration at Relativistic Shocks
    Pelletier, Guy
    Lemoine, Martin
    Marcowith, Alexandre
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2009, 1085 : 61 - +
  • [44] Minimal model of the Fermi acceleration
    Naplekov, D. M.
    Tur, A. V.
    Yanovskii, V. V.
    TECHNICAL PHYSICS, 2010, 55 (05) : 601 - 612
  • [45] Exponential decay of correlations for finite horizon Sinai billiard flows
    Baladi, Viviane
    Demers, Mark F.
    Liverani, Carlangelo
    INVENTIONES MATHEMATICAE, 2018, 211 (01) : 39 - 177
  • [46] Suppressing Fermi acceleration in a two-dimensional non-integrable time-dependent oval-shaped billiard with inelastic collisions
    Oliveira, Diego F. M.
    Leonel, Edson D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (05) : 1009 - 1020
  • [47] Exponential decay of correlations for finite horizon Sinai billiard flows
    Viviane Baladi
    Mark F. Demers
    Carlangelo Liverani
    Inventiones mathematicae, 2018, 211 : 39 - 177
  • [48] FERMI ACCELERATION IN A PERIODICALLY DRIVEN FERMI-ULAM MODEL
    Bonfim, O. F. De Alcantara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [49] Second-order Fermi acceleration as the origin of the Fermi bubbles
    Mertsch, Philipp
    Sarkar, Subir
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 692 : 265 - 268
  • [50] Stochastic acceleration by the induced electric field versus the Fermi acceleration
    Fedorov, Yu
    Stehlik, M.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (18)