Exponential Fermi Acceleration in a Switching Billiard

被引:0
|
作者
Karagulyan, Davit [1 ]
Zhou, Jing [2 ]
机构
[1] Royal Inst Technol, Dept Math, Stockholm, Sweden
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
INSTABILITY; STABILITY; SYSTEMS;
D O I
10.1007/s00220-022-04505-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show the existence of an infinite measure set of exponentially escaping orbits for a resonant Fermi accelerator, which is realised as a square billiard with a periodically oscillating platform. We use normal forms to describe the energy change in a period and employ techniques from the theory of hyperbolic systems with singularities to show the exponential drift given by these normal forms on a divided time-energy phase.
引用
收藏
页码:901 / 935
页数:35
相关论文
共 50 条
  • [21] Acceleration in a nonplanar time-dependent billiard
    Raeisi, Sedighe
    Eslami, Parvin
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [22] Boundary crisis and suppression of Fermi acceleration in a dissipative two-dimensional non-integrable time-dependent billiard
    Oliveira, Diego F. M.
    Leonel, Edson D.
    PHYSICS LETTERS A, 2010, 374 (30) : 3016 - 3020
  • [23] EFFICIENCY OF FERMI ACCELERATION
    EICHLER, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (04): : 601 - 601
  • [24] Fermi acceleration of astroparticles
    Pelletier, G
    PHYSICS AND ASTROPHYSICS OF ULTRA-HIGH-ENERGY COSMIC RAYS, 2001, 576 : 58 - 89
  • [25] Generalized Fermi acceleration
    Lemoine, Martin
    PHYSICAL REVIEW D, 2019, 99 (08)
  • [26] The dynamics of Fermi acceleration
    Lieberman, MA
    ELECTRON KINETICS AND APPLICATIONS OF GLOW DISCHARGES, 1998, 367 : 215 - 225
  • [27] Generalized Fermi acceleration
    Lemoine, Martin
    HIGH ENERGY PHENOMENA IN RELATIVISTIC OUTFLOWS VII, HEPRO VII, 2020,
  • [28] A stretched exponential bound on time correlations for billiard flows
    Chernov, N.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (01) : 21 - 50
  • [29] Complexity growth of a typical triangular billiard is weakly exponential
    Dmitri Scheglov
    Journal d'Analyse Mathématique, 2020, 142 : 105 - 124
  • [30] A Stretched Exponential Bound on Time Correlations for Billiard Flows
    N. Chernov
    Journal of Statistical Physics, 2007, 127 : 21 - 50