TORSION DIVISORS OF PLANE CURVES AND ZARISKI PAIRS

被引:1
|
作者
Artal Bartolo, E. [1 ]
Bannai, Sh. [2 ]
Shirane, T. [3 ]
Tokunaga, H. [4 ]
机构
[1] Univ Zaragoza, IUMA, Dept Matemat, C Pedro Cerbuna 12, Zaragoza 50009, Spain
[2] Okayama Univ Sci, Fac Sci, Dept Appl Math, 1-1 Ridai Cho,Kita Ku, Okayama, Okayama 7000005, Japan
[3] Tokushima Univ, Fac Sci & Technol, Dept Math Sci, Tokushima 7708502, Japan
[4] Tokyo Metropolitan Univ, Grad Sch Sci, Dept Math Sci, 1-1 Minami Ohsawa, Hachioji 1920397, Japan
关键词
FUNDAMENTAL-GROUPS; EMBEDDED TOPOLOGY; SPLITTING CURVES; QUARTICS; ARRANGEMENTS; INVARIANT; SECTIONS;
D O I
10.1090/spmj/1776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the embedded topology of reducible plane curves having a smooth irreducible component. In previous studies, the relationship between the topology and certain torsion classes in the Picard group of degree zero of the smooth component was implicitly considered. Here this relationship is formulated clearly and a criterion is given for distinguishing the embedded topology in terms of torsion classes. Furthermore, a method is presented for systematically constructing examples of curves where this criterion is applicable, and new examples of Zariski N-tuples are produced.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 50 条
  • [31] On arithmetic Zariski pairs in degree 6
    Shimada, Ichiro
    ADVANCES IN GEOMETRY, 2008, 8 (02) : 205 - 225
  • [32] Divisors on real curves
    Monnier, JP
    ADVANCES IN GEOMETRY, 2003, 3 (03) : 339 - 360
  • [33] TORSION POINTS ON THETA DIVISORS
    Auffarth, Robert
    Pirola, Gian Pietro
    Manni, Riccardo Salvati
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 89 - 99
  • [34] ZARISKI MAIN THEOREM FOR AFFINOID CURVES
    FIESELER, KH
    MATHEMATISCHE ANNALEN, 1980, 251 (02) : 97 - 110
  • [35] Triangular curves and cyclotomic Zariski tuples
    Enrique Artal Bartolo
    José Ignacio Cogolludo-Agustín
    Jorge Martín-Morales
    Collectanea Mathematica, 2020, 71 : 427 - 441
  • [36] ZARISKI MULTIPLES ASSOCIATED WITH QUARTIC CURVES
    Shimada, Ichiro
    JOURNAL OF SINGULARITIES, 2022, 24 : 169 - 189
  • [37] Triangular curves and cyclotomic Zariski tuples
    Artal Bartolo, Enrique
    Ignacio Cogolludo-Agustin, Jose
    Martin-Morales, Jorge
    COLLECTANEA MATHEMATICA, 2020, 71 (03) : 427 - 441
  • [38] ON PAIRS OF PLANE-CURVES WITH PROJECTIVELY EQUIVALENT LINEAR SECTIONS
    BALLICO, E
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (03) : 815 - 828
  • [39] Plane Partitions and Divisors
    Ballantine, Cristina
    Merca, Mircea
    SYMMETRY-BASEL, 2024, 16 (01):
  • [40] Some Open Questions on Arithmetic Zariski Pairs
    Artal Bartolo, Enrique
    Ignacio Cogolludo-Agustin, Jose
    SINGULARITIES IN GEOMETRY, TOPOLOGY, FOLIATIONS AND DYNAMICS: A CELEBRATION OF THE 60TH BIRTHDAY OF JOSE SEADE, 2017, : 31 - 54