Triangular curves and cyclotomic Zariski tuples

被引:3
|
作者
Artal Bartolo, Enrique [1 ]
Ignacio Cogolludo-Agustin, Jose [1 ]
Martin-Morales, Jorge [2 ]
机构
[1] Univ Zaragoza, IUMA, Dept Matemat, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Ctr Univ Defensa, IUMA, Acad Gen Mil, Ctra Huesca S-N, Zaragoza, Spain
关键词
Zariski pairs; Arithmetic Zariski pairs; Linking numbers; EMBEDDED TOPOLOGY;
D O I
10.1007/s13348-019-00269-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to exhibit infinite families of conjugate projective curves in a number field whose complement have the same abelian fundamental group, but are nonhomeomorphic. In particular, for any d >= 4wefindZariski tuples parametrized by the d-roots of unity up to complex conjugation. As a consequence, for any divisorm of d, m not equal 1, 2, 3, 4, 6, we find arithmetic Zariski tuples with coefficients in the corresponding cyclotomic field. These curves have abelian fundamental group and they are distinguished using a linking invariant.
引用
收藏
页码:427 / 441
页数:15
相关论文
共 50 条
  • [1] Triangular curves and cyclotomic Zariski tuples
    Enrique Artal Bartolo
    José Ignacio Cogolludo-Agustín
    Jorge Martín-Morales
    Collectanea Mathematica, 2020, 71 : 427 - 441
  • [2] An explicit construction for n-contact curves to a smooth cubic via divisions of polynomials and Zariski tuples
    Takahashi, Ai
    Tokunaga, Hiro-o
    HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (03) : 389 - 405
  • [3] Zariski tuples for a smooth cubic and its tangent lines
    Bannai, Shinzo
    Tokunaga, Hiro-o
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2020, 96 (02) : 18 - 21
  • [4] Cyclotomic points on curves
    Beukers, F
    Smyth, CJ
    NUMBER THEORY FOR THE MILLENNIUM I, 2002, : 67 - 85
  • [5] ZARISKI MAIN THEOREM FOR AFFINOID CURVES
    FIESELER, KH
    MATHEMATISCHE ANNALEN, 1980, 251 (02) : 97 - 110
  • [6] ZARISKI MULTIPLES ASSOCIATED WITH QUARTIC CURVES
    Shimada, Ichiro
    JOURNAL OF SINGULARITIES, 2022, 24 : 169 - 189
  • [7] TRIANGULAR DIOPHANTINE TUPLES FROM {1, 2}
    Filipin, Alan
    Szalay, Laszlo
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2023, 27 (555): : 55 - 70
  • [8] TORSION DIVISORS OF PLANE CURVES AND ZARISKI PAIRS
    Artal Bartolo, E.
    Bannai, Sh.
    Shirane, T.
    Tokunaga, H.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2023, 34 (05) : 721 - 736
  • [9] SOME NEW ZARISKI PAIRS OF SEXTIC CURVES
    Wu, Bo
    Yang, Jin-Gen
    TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (03) : 409 - 426
  • [10] Discrminantal groups and Zariski pairs of sextic curves
    Yang, Jin-Gen
    Xie, Jinjing
    GEOMETRIAE DEDICATA, 2012, 158 (01) : 235 - 259