Zariski tuples for a smooth cubic and its tangent lines

被引:4
|
作者
Bannai, Shinzo [1 ]
Tokunaga, Hiro-o [2 ]
机构
[1] Natl Inst Technol, Ibaraki Coll, 866 Nakane, Hitachnaka, Ibaraki 3128508, Japan
[2] Tokyo Metropolitan Univ, Grad Sch Sci, Dept Math Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
Elliptic curves; torsion points; Zariski pairs; splitting numbers; ELLIPTIC-SURFACES; ARRANGEMENTS; TOPOLOGY; SECTIONS;
D O I
10.3792/pjaa.96.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the geometry of two-torsion points of elliptic curves in order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic and its tangent lines. As a result, we obtain a new family of Zariski tuples consisting of such curves.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 50 条
  • [1] An explicit construction for n-contact curves to a smooth cubic via divisions of polynomials and Zariski tuples
    Takahashi, Ai
    Tokunaga, Hiro-o
    HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (03) : 389 - 405
  • [2] Triangular curves and cyclotomic Zariski tuples
    Artal Bartolo, Enrique
    Ignacio Cogolludo-Agustin, Jose
    Martin-Morales, Jorge
    COLLECTANEA MATHEMATICA, 2020, 71 (03) : 427 - 441
  • [3] Triangular curves and cyclotomic Zariski tuples
    Enrique Artal Bartolo
    José Ignacio Cogolludo-Agustín
    Jorge Martín-Morales
    Collectanea Mathematica, 2020, 71 : 427 - 441
  • [4] CYCLES AND ZARISKI TANGENT CONE
    HENAUT, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (05): : 333 - 335
  • [5] Enumeration of rational plane curves tangent to a smooth cubic
    Cadman, Charles
    Chen, Linda
    ADVANCES IN MATHEMATICS, 2008, 219 (01) : 316 - 343
  • [6] Smooth cubic surfaces with 15 lines
    Karaoglu, Fatma
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (06) : 823 - 853
  • [7] Smooth cubic surfaces with 15 lines
    Fatma Karaoglu
    Applicable Algebra in Engineering, Communication and Computing, 2022, 33 : 823 - 853
  • [8] ZARISKI TANGENT SPACE TO A COMPLEX ANALYTIC VARIETY
    BLOOM, T
    MATHEMATISCHE ANNALEN, 1975, 214 (02) : 159 - 166
  • [9] An arithmetic count of the lines on a smooth cubic surface
    Kass, Jesse Leo
    Wickelgren, Kirsten
    COMPOSITIO MATHEMATICA, 2021, 157 (04) : 677 - 709
  • [10] A SMOOTH VERSION OF THE ZARISKI TOPOS
    MOERDIJK, I
    REYES, GE
    ADVANCES IN MATHEMATICS, 1987, 65 (03) : 229 - 253