Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data

被引:0
|
作者
Huang, Jing [1 ]
Zhang, Yinghao [1 ]
Yang, Fang [1 ]
Chai, Li [2 ]
Tansey, Kevin
机构
[1] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral images; Light Detection And Ranging (LiDAR) data; fusion and classification; convolutional neural network; attention mechanism; IMAGE CLASSIFICATION; EXTINCTION PROFILES;
D O I
10.3390/rs16010094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The joint use of hyperspectral image (HSI) and Light Detection And Ranging (LiDAR) data has been widely applied for land cover classification because it can comprehensively represent the urban structures and land material properties. However, existing methods fail to combine the different image information effectively, which limits the semantic relevance of different data sources. To solve this problem, in this paper, an Attention-guided Fusion and Classification framework based on Convolutional Neural Network (AFC-CNN) is proposed to classify the land cover based on the joint use of HSI and LiDAR data. In the feature extraction module, AFC-CNN employs the three dimensional convolutional neural network (3D-CNN) combined with a multi-scale structure to extract the spatial-spectral features of HSI, and uses a 2D-CNN to extract the spatial features from LiDAR data. Simultaneously, the spectral attention mechanism is adopted to assign weights to the spectral channels, and the cross attention mechanism is introduced to impart significant spatial weights from LiDAR to HSI, which enhance the interaction between HSI and LiDAR data and leverage the fusion information. Then two feature branches are concatenated and transferred to the feature fusion module for higher-level feature extraction and fusion. In the fusion module, AFC-CNN adopts the depth separable convolution connected through the residual structures to obtain the advanced features, which can help reduce computational complexity and improve the fitting ability of the model. Finally, the fused features are sent into the linear classification module for final classification. Experimental results on three datasets, i.e., Houston, MUUFL and Trento datasets show that the proposed AFC-CNN framework achieves better classification accuracy compared with the state-of-the-art algorithms. The overall accuracy of AFC-CNN on Houston, MUUFL and Trento datasets are 94.2%, 95.3% and 99.5%, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] CLASSIFICATION OF CLOUDY HYPERSPECTRAL IMAGE AND LIDAR DATA BASED ON FEATURE FUSION AND DECISION FUSION
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2518 - 2521
  • [32] FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification
    Mohla, Satyam
    Pande, Shivam
    Banerjee, Biplab
    Chaudhuri, Subhasis
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 416 - 425
  • [33] PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA
    Ge, Chiru
    Du, Qian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2675 - 2678
  • [34] Hyperspectral and LiDAR Classification With Semisupervised Graph Fusion
    Xia, Junshi
    Liao, Wenzhi
    Du, Peijun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (04) : 666 - 670
  • [35] AgF2Net: Attention-Guided Feature Fusion Network for Multitemporal Hyperspectral Image Change Detection
    Wang, Xianghai
    Ni, Weihan
    Feng, Yining
    Song, Liyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [36] Siamese Progressive Attention-Guided Fusion Network for Object Tracking
    Fan Y.
    Song X.
    Song, Xiaoning (x.song@jiangnan.edu.cn), 1600, Institute of Computing Technology (33): : 199 - 206
  • [37] HYPERSPECTRAL AND LIDAR DATA INTEGRATION AND CLASSIFICATION
    Angeles Garcia-Sopo, Maria
    Cuartero, Aurora
    Garcia Rodriguez, Pablo
    Plaza, Antonio
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 57 - 60
  • [38] Information Fusion for Classification of Hyperspectral and LiDAR Data Using IP-CNN
    Zhang, Mengmeng
    Li, Wei
    Tao, Ran
    Li, Hengchao
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] OBJECT-BASED FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS
    Marpu, Prashanth Reddy
    Martinez, Sergio Sanchez
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [40] URBAN AREA OBJECT-BASED CLASSIFICATION BY FUSION OF HYPERSPECTRAL AND LIDAR DATA
    Kiani, Kamel
    Mojaradi, Barat
    Esmaeily, Ali
    Salehi, Bahram
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,