q-Rung orthopair fuzzy inequality derived from equality and operation

被引:0
|
作者
Peng, Xindong [1 ,2 ]
Wang, Yanru [3 ]
Luo, Zhigang [2 ]
机构
[1] Shaoguan Univ, Sch Informat Engn, Shaoguan 512005, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
q-Rung orthopair fuzzy set; Equality; Inequalities; Operations;
D O I
10.1007/s00500-023-07950-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The q-rung orthopair fuzzy set is an extension of fuzzy set, whose remarkable characteristic is that the sum of q power of membership degree, non-membership degree and hesitation degree is equal to 1. Inequalities on q-rung orthopair fuzzy set are of importance in theory of uncertainty. In this paper, firstly, some q-rung orthopair fuzzy inequalities are constructed based on the equality in definition. Then, their inequalities are proved by well-known inequalities, including Rearrangement, Mean, Chebyshev, Nesbitt, Power-Mean, Cauchy, Carlson, Wei-Wei dual, Holder, Minkowski, Jensen, Tangent, Schur, Muirhead, Vasc or their mix forms. Finally, we derive other q-rung orthopair fuzzy inequalities based on some existing operations, which provides a new basis for the q-rung orthopair fuzzy inequalities.
引用
收藏
页码:5233 / 5255
页数:23
相关论文
共 50 条
  • [41] A novel structure of q-rung orthopair fuzzy sets in ring theory
    Alghazzwi, Dilshad
    Ali, Arshad
    Almutlg, Ahmad
    Abo-Tabl, E. A.
    Azzam, A. A.
    AIMS MATHEMATICS, 2023, 8 (04): : 8365 - 8385
  • [42] A further investigation on q-rung orthopair fuzzy Einstein aggregation operators
    Du, Wen Sheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 6655 - 6673
  • [43] q-Rung orthopair fuzzy directed hypergraphs: A new model with applications
    Luqman, Anam
    Akram, Muhammad
    Davvaz, Bijan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (03) : 3777 - 3794
  • [44] A Detailed Study of Mathematical Rings in q-Rung Orthopair Fuzzy Framework
    Razzaque, Asima
    Razaq, Abdul
    Alhamzi, Ghaliah
    Garg, Harish
    Faraz, Muhammad Iftikhar
    SYMMETRY-BASEL, 2023, 15 (03):
  • [45] Some Topological Characteristics of q-Rung Orthopair Fuzzy Metric Space
    Shahid, Lariab
    Rashid, Maliha
    Azam, Akbar
    Hussain, Aftab
    Basendwah, Ghada Ali
    ADVANCES IN FUZZY SYSTEMS, 2024, 2024
  • [46] Dual hesitant q-rung orthopair fuzzy hamacher graphs with application
    Akram, Muhammad
    Naz, Sumera
    Ziaa, Faiza
    Journal of Multiple-Valued Logic and Soft Computing, 2020, 35 (5-6): : 509 - 543
  • [47] Q-Rung Orthopair Fuzzy Petri Nets for Knowledge Representation and Reasoning
    Bai, Kaiyuan
    Jia, Dan
    Meng, Weiye
    He, Xingmin
    IEEE ACCESS, 2023, 11 : 93560 - 93573
  • [48] The q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators
    Liu, Peide
    Chen, Shyi-Ming
    Wang, Peng
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 156 - 161
  • [49] Dual Hesitant q-Rung Orthopair Fuzzy Hamacher Graphs with Application
    Akram, Muhammad
    Naz, Sumera
    Ziaa, Faiza
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2020, 35 (5-6) : 509 - 543
  • [50] Multiplicative consistency analysis for q-rung orthopair fuzzy preference relation
    Zhang, Cheng
    Liao, Huchang
    Luo, Li
    Xu, Zeshui
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2020, 35 (01) : 38 - 71