q-Rung orthopair fuzzy inequality derived from equality and operation

被引:0
|
作者
Peng, Xindong [1 ,2 ]
Wang, Yanru [3 ]
Luo, Zhigang [2 ]
机构
[1] Shaoguan Univ, Sch Informat Engn, Shaoguan 512005, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
q-Rung orthopair fuzzy set; Equality; Inequalities; Operations;
D O I
10.1007/s00500-023-07950-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The q-rung orthopair fuzzy set is an extension of fuzzy set, whose remarkable characteristic is that the sum of q power of membership degree, non-membership degree and hesitation degree is equal to 1. Inequalities on q-rung orthopair fuzzy set are of importance in theory of uncertainty. In this paper, firstly, some q-rung orthopair fuzzy inequalities are constructed based on the equality in definition. Then, their inequalities are proved by well-known inequalities, including Rearrangement, Mean, Chebyshev, Nesbitt, Power-Mean, Cauchy, Carlson, Wei-Wei dual, Holder, Minkowski, Jensen, Tangent, Schur, Muirhead, Vasc or their mix forms. Finally, we derive other q-rung orthopair fuzzy inequalities based on some existing operations, which provides a new basis for the q-rung orthopair fuzzy inequalities.
引用
收藏
页码:5233 / 5255
页数:23
相关论文
共 50 条
  • [21] Continuities, Derivatives, and Differentials of q-Rung Orthopair Fuzzy Functions
    Gao, Jie
    Liang, Zhilei
    Shang, Jennifer
    Xu, Zeshui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (08) : 1687 - 1699
  • [22] Complex q-rung orthopair fuzzy competition graphs and their applications
    Ullah, Kifayat
    Hussain, Abrar
    Mahmood, Tahir
    Ali, Zeeshan
    Alabrah, Amerah
    Rahman, Sk. Md. Mizanur
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1558 - 1605
  • [23] Graphical Analysis of q-Rung Orthopair Fuzzy Information with Application
    AlSalman, Hussain
    Alkhamees, Bader Fahad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [24] A Novel Framework of q-Rung Orthopair Fuzzy Sets in Field
    Alnefaie, Kholood
    Xin, Qin
    Almutlg, Ahmad
    Abo-Tabl, El-Sayed A.
    Mateen, M. Haris
    SYMMETRY-BASEL, 2023, 15 (01):
  • [25] q-Rung Orthopair Fuzzy Matroids with Application to Human Trafficking
    Asif, Muhammad
    Kattan, Doha A.
    Pamucar, Dragan
    Ali, Ghous
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [26] Complemental Fuzzy Sets: A Semantic Justification of q-Rung Orthopair Fuzzy Sets
    Alcantud, Jose Carlos R.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4262 - 4270
  • [27] Soft Rough q-Rung Orthopair m-Polar Fuzzy Sets and q-Rung Orthopair m-Polar Fuzzy Soft Rough Sets and Their Applications
    Ping, Jingshui
    Atef, Mohammed
    Khalil, Ahmed Mostafa
    Riaz, Muhammad
    Hassan, Nasruddin
    IEEE ACCESS, 2021, 9 : 139186 - 139200
  • [28] q-Rung Orthopair Fuzzy Competition Graphs with Application in the Soil Ecosystem
    Habib, Amna
    Akram, Muhammad
    Farooq, Adeel
    MATHEMATICS, 2019, 7 (01):
  • [29] Contemporary Algebraic Attributes of the q-Rung Orthopair Complex Fuzzy Subgroups
    Ali, Arshad
    Hmissi, Mohamed
    Alsuraiheed, Turki
    Akter, Dilruba
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [30] Circular q-Rung Orthopair Fuzzy Set and Its Algebraic Properties
    Yusoff, B.
    Kilicman, A.
    Pratama, D.
    Hasni, R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (03): : 363 - 378