Bootstrap for lattice Yang-Mills theory

被引:13
|
作者
Kazakov, Vladimir [1 ,2 ]
Zheng, Zechuan [1 ]
机构
[1] Univ Paris Cite, Sorbonne Univ, Univ PSL, Ecole Normale Super,ENS,CNRS,Lab Phys, 24 Rue Lhomond, F-75005 Paris, France
[2] CNRS, UMI 2615, Interdisciplinary Sci Ctr Poncelet, Moscow 119002, Russia
关键词
LOOP-SPACE HAMILTONIANS; NUMERICAL-METHODS; GAUGE; EQUATIONS; COMPUTATION;
D O I
10.1103/PhysRevD.107.L051501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the SU(infinity) lattice Yang-Mills theory at the dimensions D = 2, 3, 4 via the numerical bootstrap method. It combines the loop equations, with a cutoff Lmax on the maximal length of loops, and positivity conditions on certain matrices of Wilson loop averages. Our algorithm is inspired by the pioneering paper of P. D. Anderson and M. Kruczenski [Nucl. Phys. B921, 702 (2017)] but it is significantly more efficient, as it takes into account the symmetries of the lattice theory and uses the relaxation procedure in line with our previous work on matrix bootstrap. We thus obtain rigorous upper and lower bounds on the plaquette average at various couplings and dimensions. For D = 4; Lmax = 16 the lower bound data appear to be close to the Monte Carlo data in the strong coupling phase and the upper bound data in the weak coupling phase reproduce well the 3-loop perturbation theory. Our results suggest that this bootstrap approach can provide a tangible alternative to the, so far uncontested, Monte Carlo approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Yang-Mills as a Liouville theory
    Stieberger, Stephan
    Taylor, Tomasz R.
    Zhu, Bin
    PHYSICS LETTERS B, 2023, 846
  • [32] Carrollian Yang-Mills theory
    Islam, Minhajul
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (05):
  • [33] Galilean Yang-Mills theory
    Arjun Bagchi
    Rudranil Basu
    Ashish Kakkar
    Aditya Mehra
    Journal of High Energy Physics, 2016
  • [34] Emergent Yang-Mills theory
    Koch, Robert de Mello
    Huang, Jia-Hui
    Kim, Minkyoo
    Van Zyl, Hendrik J. R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [35] Generalization of the Yang-Mills theory
    Savvidy, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [36] Maximally supersymmetric Yang-Mills on the lattice
    Schaich, David
    Catterall, Simon
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (36):
  • [37] Classical Yang-Mills theory
    Boozer, A. D.
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (09) : 925 - 931
  • [38] Yang-Mills theory in λ gauges
    Maas, Axel
    Mendes, Tereza
    Olejnik, Stefan
    PHYSICAL REVIEW D, 2011, 84 (11):
  • [39] GRAVITY AND YANG-MILLS THEORY
    Ananth, Sudarshan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (14): : 2379 - 2384
  • [40] Deformations of Yang-Mills theory
    Cofano, Marco
    Fu, Chih-Hao
    Krasnov, Kirill
    PHYSICAL REVIEW D, 2015, 92 (06):