Bootstrap for lattice Yang-Mills theory

被引:13
|
作者
Kazakov, Vladimir [1 ,2 ]
Zheng, Zechuan [1 ]
机构
[1] Univ Paris Cite, Sorbonne Univ, Univ PSL, Ecole Normale Super,ENS,CNRS,Lab Phys, 24 Rue Lhomond, F-75005 Paris, France
[2] CNRS, UMI 2615, Interdisciplinary Sci Ctr Poncelet, Moscow 119002, Russia
关键词
LOOP-SPACE HAMILTONIANS; NUMERICAL-METHODS; GAUGE; EQUATIONS; COMPUTATION;
D O I
10.1103/PhysRevD.107.L051501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the SU(infinity) lattice Yang-Mills theory at the dimensions D = 2, 3, 4 via the numerical bootstrap method. It combines the loop equations, with a cutoff Lmax on the maximal length of loops, and positivity conditions on certain matrices of Wilson loop averages. Our algorithm is inspired by the pioneering paper of P. D. Anderson and M. Kruczenski [Nucl. Phys. B921, 702 (2017)] but it is significantly more efficient, as it takes into account the symmetries of the lattice theory and uses the relaxation procedure in line with our previous work on matrix bootstrap. We thus obtain rigorous upper and lower bounds on the plaquette average at various couplings and dimensions. For D = 4; Lmax = 16 the lower bound data appear to be close to the Monte Carlo data in the strong coupling phase and the upper bound data in the weak coupling phase reproduce well the 3-loop perturbation theory. Our results suggest that this bootstrap approach can provide a tangible alternative to the, so far uncontested, Monte Carlo approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Yang-Mills Theory of Gravity
    Al Matwi, Malik
    PHYSICS, 2019, 1 (03): : 339 - 359
  • [22] YANG-MILLS THEORY ON A CIRCLE
    HETRICK, JE
    HOSOTANI, Y
    PHYSICS LETTERS B, 1989, 230 (1-2) : 88 - 92
  • [23] YANG-MILLS THEORY ON A CYLINDER
    RAJEEV, SG
    PHYSICS LETTERS B, 1988, 212 (02) : 203 - 205
  • [24] A consistent measure for lattice Yang-Mills
    Vilela Mendes, R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (2-3):
  • [25] The Quantum Yang-Mills Theory
    Metaxas, Dimitrios
    UNIVERSE, 2023, 9 (09)
  • [26] STOCHASTICITY IN YANG-MILLS THEORY
    VILLARROEL, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (09) : 2132 - 2136
  • [27] YANG-MILLS THEORY ON HYPERTORUS
    SCHECHTER, BM
    PHYSICAL REVIEW D, 1977, 16 (10): : 3015 - 3020
  • [28] Emergent Yang-Mills theory
    Robert de Mello Koch
    Jia-Hui Huang
    Minkyoo Kim
    Hendrik J.R. Van Zyl
    Journal of High Energy Physics, 2020
  • [29] THEORY OF YANG-MILLS FIELDS
    POPOV, DA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) : 879 - 885
  • [30] Galilean Yang-Mills theory
    Bagchi, Arjun
    Basu, Rudranil
    Kakkar, Ashish
    Mehra, Aditya
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):