Detection of Xylene Using Ni(OH)2-Enhanced Co3O4 Nanoplate via p-n Junctions

被引:5
|
作者
Ran, Mengran [1 ]
Yuan, Zhenyu [1 ]
Zhu, Hongmin [1 ]
Gao, Hongliang [1 ]
Meng, Fanli [1 ,2 ,3 ,4 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Hebei Key Lab Micronano Precis Opt Sensing & Meas, Qinhuangdao 066004, Hebei, Peoples R China
[3] Northeastern Univ, Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt, Shenyang 110819, Peoples R China
[4] Northeastern Univ, Key Lab Data Analyt & Optimizat Smart Ind, Minist Educ, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
xylene; gas sensor; Ni(OH)(2); p-n junctions; SENSING PROPERTIES; GAS; NANOSHEETS; SENSORS; SNO2;
D O I
10.3390/chemosensors11110568
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study reports a novel Ni(OH)(2)/Co3O4 heterostructured nanomaterial synthesized through a simple two-step hydrothermal method combined with subsequent heat treatment. The Ni(OH)(2)/Co3O4 heterostructured nanomaterial showed excellent performance in the detection of xylene gas. XRD, SEM, and EDS characterized the crystal structure, microstructure, and composition elements of Co3O4 and Ni(OH)(2)/Co3O4, and the gas sensing properties of the Co3O4 sensor and Ni(OH)(2)/Co3O4 sensor were systematically tested. The test results indicate the Ni(OH)(2)/Co3O4 sensor has an optimal operating temperature of 175 degrees C, which is 10 degrees C lower than that of the Co3O4 sensor; has a response of 14.1 to 100 ppm xylene, which is 7-fold higher than that of the Co3O4 sensor; reduces the detection limit of xylene from 2 ppm to 100 ppb; and has at least a 4-fold higher response to xylene than other gases. The Ni(OH)(2)/Co3O4 nanocomposite exerts the excellent catalytic performance of two-dimensional nanomaterial Ni(OH)(2), solves the deficiency in the electrical conductivity of Ni(OH)(2) materials, and realizes the outstanding sensing performance of xylene, while the construction of the p-n heterojunction between Ni(OH)(2) and Co3O4 also improves the sensing performance of the material. This study provides a strategy for designing high-performance xylene gas sensors using two-dimensional Ni(OH)(2) materials.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Determination of the conduction and valence band offsets at the Co3O4/3C-SiC p-n heterojunction
    Zeng, Hui
    Wang, Weimin
    Ivanov, Ivan G.
    Darakchieva, Vanya
    Sun, Jianwu
    APPLIED PHYSICS LETTERS, 2024, 125 (16)
  • [32] Monolithic LaBO3 (B=Mn, Co or Ni)/Co3O4/cordierite Catalysts for o-Xylene Combustion
    Sun, Xuewei
    Wu, Dongfang
    CHEMISTRYSELECT, 2019, 4 (19): : 5503 - 5511
  • [33] Two-step hydrothermal synthesis of novel hierarchical Co3O4/Bi2O2CO3 p-n heterojunction composite photocatalyst with enhanced visible light photocatalytic activity
    Yang, Chunming
    Gao, Guimei
    Guo, Zhifeng
    Song, Litao
    Chi, Junzhou
    Gan, Shucai
    APPLIED SURFACE SCIENCE, 2017, 400 : 365 - 374
  • [34] ZIF-67 derived LaCoO3/Co3O4 nanoparticles/g-C3N4 P-N junction with enhanced photodynamic antibacterial performance
    Liu, Junli
    Shen, Jiahao
    Zhang, Kaitao
    Zhang, Hua
    Yi, Yunxiao
    Liu, Jin
    Liu, Hui
    Li, Junqi
    Hui, Aiping
    APPLIED SURFACE SCIENCE, 2024, 643
  • [35] Novel p-n heterojunction Co3O4/AlOOH composites materials for gas sensing at room temperature
    Zhang, Xinci
    Guo, Ping
    Pan, Qingjiang
    Shi, Keying
    Zhang, Guo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 : 514 - 521
  • [36] Magnetic Field Enhanced Electrocatalytic Oxygen Evolution of NiFe-LDH/Co3O4 p-n Heterojunction Supported on Nickel Foam
    Zhang, Yuanyuan
    Guo, Ping
    Niu, Siqi
    Wu, Jie
    Wang, Wei
    Song, Bo
    Wang, Xianjie
    Jiang, Zaixing
    Xu, Ping
    SMALL METHODS, 2022, 6 (06)
  • [37] Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode
    Rui Miao
    Bairui Tao
    Fengjuan Miao
    Yu Zang
    Cuiping Shi
    Lei Zhu
    Paul K. Chu
    Ionics, 2019, 25 : 1783 - 1792
  • [38] Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode
    Miao, Rui
    Tao, Bairui
    Miao, Fengjuan
    Zang, Yu
    Shi, Cuiping
    Zhu, Lei
    Chu, Paul K.
    IONICS, 2019, 25 (04) : 1783 - 1792
  • [39] Efficient Mo-Co(OH)2/Co3O4/Ni foam electrocatalyst for overall water splitting
    Yang, Hong
    Hu, Tuoping
    Meng, Rongqian
    Guo, Lijun
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 320
  • [40] Reasonable construction of 2D porous NiO/Co3O4 nanosheets for efficient detection of xylene
    Zhang, Jing
    Zhang, Kewei
    Liu, Shuang
    Liang, Xiao
    Zhang, Mingzhe
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 377