Support Vector Machine to Predict the Pile Settlement using Novel Optimization Algorithm

被引:6
|
作者
Ge, Qingyun [1 ]
Li, Caimei [2 ]
Yang, Fulian [1 ]
机构
[1] West Anhui Univ, Luan, Anhui, Peoples R China
[2] Gates Winhere Automobile Water Pump Prod Yantai Co, Yantai 712000, Shandong, Peoples R China
关键词
Pile settlement; Support vector regression; Grasshopper optimization algorithm; Arithmetic optimization algorithm; RMSE; NEURAL-NETWORK; SHALLOW FOUNDATIONS; CAPACITY; SELECTION; MODEL; CLAY; GRNN;
D O I
10.1007/s10706-023-02487-5
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Project Immunization, like piled construction, requires considerations that make them safe during the period of operation. Pile Settlement (PS), a vital issue in projects, has attracted many regards to avoid failure before commencing employing constructions. Several factors in appraising the pile movement can assist in understanding the future of the project in the loading stage. Many intelligent strategies to mathematically compute the pile motion are employed to simulate the PS. The present study aims to use Support vector regression (SVR) to predict the settlement of piles. In addition, to improve the accuracy of the related model, two meta-heuristic algorithms have been used, including the Arithmetic Optimization Algorithm (AOA) and Grasshopper Optimization Algorithm (GOA), a hybrid format in the framework of SVR-AOA and SVR-GOA. Kuala Lumpur transportation network was chosen to investigate the pile motion according to the ground properties' condition with SVR-AOA and SVR-GOA developed frameworks. For the evaluation of each model's performance, five indices were employed. That, the values of RMSEs for SVR-AOA and SVR-GOA were obtained at 0.550 and 0.592, respectively, and MAE exhibited the values of 0.525 and 0.561 alternatively. The R-value for the SVR-AOA showed a desirable magnitude of 0.994, which is 0.10% higher than the SVR-GOA. Also, OBJ, including R, RMSE, and MAE, for SVR-GOA and SVR-AOA were computed at 0.541 and 0.586 mm, respectively. Models' results have had a similar performance to estimating the PS rate.
引用
收藏
页码:3861 / 3875
页数:15
相关论文
共 50 条
  • [21] A modified butterfly optimization algorithm: An adaptive algorithm for global optimization and the support vector machine
    Hu, Kun
    Jiang, Hao
    Ji, Chen-Guang
    Pan, Ze
    EXPERT SYSTEMS, 2021, 38 (03)
  • [22] Chaotic antlion algorithm for parameter optimization of support vector machine
    Alaa Tharwat
    Aboul Ella Hassanien
    Applied Intelligence, 2018, 48 : 670 - 686
  • [23] Optimization Algorithm Based On Genetic Support Vector Machine Model
    Li, Lan
    Ma, Shaobin
    Zhang, Yun
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 307 - 310
  • [24] Support Vector Machine Parameters Optimization by Enhanced Fireworks Algorithm
    Tuba, Eva
    Tuba, Milan
    Beko, Marko
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT I, 2016, 9712 : 526 - 534
  • [25] Chaotic antlion algorithm for parameter optimization of support vector machine
    Tharwat, Alaa
    Hassanien, Aboul Ella
    APPLIED INTELLIGENCE, 2018, 48 (03) : 670 - 686
  • [26] Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
    Zhou, Jian
    Zhu, Shuangli
    Qiu, Yingui
    Armaghani, Danial Jahed
    Zhou, Annan
    Yong, Weixun
    ACTA GEOTECHNICA, 2022, 17 (04) : 1343 - 1366
  • [27] Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
    Jian Zhou
    Shuangli Zhu
    Yingui Qiu
    Danial Jahed Armaghani
    Annan Zhou
    Weixun Yong
    Acta Geotechnica, 2022, 17 : 1343 - 1366
  • [28] A Novel Classification Approach Based on Support Vector Machine and Adaptive Particle Swarm Optimization Algorithm
    Chen, Xi
    Han, Jing
    KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 703 - 707
  • [29] The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction
    Adnan, Rana Muhammad
    Kisi, Ozgur
    Mostafa, Reham R.
    Ahmed, Ali Najah
    El-Shafie, Ahmed
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2022, 67 (02): : 161 - 174
  • [30] A Novel Support-Vector-Machine-Based Grasshopper Optimization Algorithm for Structural Reliability Analysis
    Yang, Yutai
    Sun, Weizhe
    Su, Guoshao
    BUILDINGS, 2022, 12 (06)