Existence theory of fractional order three-dimensional differential system at resonance

被引:1
|
作者
Kumar, M. Sathish [1 ]
Deepa, M. [2 ]
Kavitha, J. [3 ]
Sadhasivam, V. [4 ]
机构
[1] Paavai Engn Coll Autonomous, Dept Math, Namakkal 637018, Tamil Nadu, India
[2] Pavai Arts & Sci Coll Women, Dept Math, Namakkal 637401, Tamil Nadu, India
[3] Sona Coll Technol Autonomous, Dept Math, Salem 636005, Tamil Nadu, India
[4] Thiruvalluvar Govt Arts Coll, Post Grad & Res Dept Math, Namakkal 637401, Tamil Nadu, India
来源
MATHEMATICAL MODELLING AND CONTROL | 2023年 / 3卷 / 02期
关键词
fractional differential equation; coincidence degree theory; resonance;
D O I
10.3934/mmc.2023012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with three-dimensional differential system of nonlinear fractional order problem D-0(alpha+) upsilon(%) = f(%, omega(%), omega l(%), omega'0(%), ..., omega(n-1)(%)), % is an element of (0, 1), D-0(beta+)nu(%) = g(%, upsilon(%), upsilon 0(%), upsilon 0f(%), ..., upsilon(n-1)(%)), % is an element of (0, 1), D-0+(gamma)omega(%) = h(%, nu(%), nu'(%), nu"(%), ..., nu(n-1)(%)), % is an element of (0, 1), with the boundary conditions, upsilon(0) = upsilon 0(0) = ... = upsilon(n-2)(0) = 0, upsilon(n-1)(0) = upsilon(n-1)(1), nu(0) = nu'(0) = ... = nu(n-2)(0) = 0, nu(n-1)(0) = nu(n-1)(1), omega(0) = omega r(0) = ... = omega(n-2)(0) = 0, omega(n-1)(0) = omega(n-1)(1), where D-0+(alpha) , D-beta(0+), D-0+(gamma) are the standard Caputo fractional derivative, n - 1 < alpha, beta, gamma <= n, n >= 2 and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
  • [31] EXISTENCE THEORY FOR IMPULSIVE PARTIAL HYPERBOLIC DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER AT VARIABLE TIMES
    Abbas, Said
    Benchohra, Mouffak
    FIXED POINT THEORY, 2011, 12 (01): : 3 - 16
  • [32] Existence Theory for ψ-Caputo Fractional Differential Equations
    Nadhir Bendrici
    Abdelatif Boutiara
    Malika Boumedien-Zidani
    Ukrainian Mathematical Journal, 2025, 76 (9) : 1457 - 1471
  • [33] Three-Dimensional Magnetic Resonance Imaging in the Musculoskeletal System
    Ahlawat, Shivani
    Kumar, Neil M.
    Ghasemi, Ali
    Fayad, Laura M.
    INVESTIGATIVE RADIOLOGY, 2025, 60 (03) : 184 - 197
  • [34] Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization
    Ouannas, Adel
    Khennaoui, Amina Aicha
    Momani, Shaher
    Grassi, Giuseppe
    Viet-Thanh Pham
    AIP ADVANCES, 2020, 10 (04)
  • [35] A predictor-corrector scheme for the nonlinear chaotic variable-order fractional three-dimensional system
    Shabani, A.
    Refahi Sheikhani, A.H.
    Aminikhah, H.
    Gholamin, P.
    Refahi Sheikhani, A.H. (ah-refahi@yahoo.com), 1600, Politechnica University of Bucharest (83): : 187 - 202
  • [36] Bifurcation Analysis and Stability Criterion for the Nonlinear Fractional-Order Three-Dimensional Financial System with Delay
    Zhang, Zhe
    Zhang, Jing
    Cheng, Fanyong
    Xu, Yuebing
    ASIAN JOURNAL OF CONTROL, 2020, 22 (01) : 240 - 250
  • [37] A PREDICTOR-CORRECTOR SCHEME FOR THE NONLINEAR CHAOTIC VARIABLE-ORDER FRACTIONAL THREE-DIMENSIONAL SYSTEM
    Shabani, A.
    Sheikhani, A. H. Refahi
    Aminikhah, H.
    Gholamin, P.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (02): : 187 - 202
  • [38] INTEGRABILITY AND BIFURCATIONS OF A THREE-DIMENSIONAL CIRCUIT DIFFERENTIAL SYSTEM
    Fercec, Brigita
    Romanovski, Valery G.
    Tang, Yilei
    Zhang, Ling
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4573 - 4588
  • [39] Dynamical analysis of a new three-dimensional fractional chaotic system
    P Gholamin
    A H Refahi Sheikhani
    Pramana, 2019, 92
  • [40] Dynamical analysis of a new three-dimensional fractional chaotic system
    Gholamin, P.
    Sheikhani, A. H. Refahi
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (06):