Existence theory of fractional order three-dimensional differential system at resonance

被引:1
|
作者
Kumar, M. Sathish [1 ]
Deepa, M. [2 ]
Kavitha, J. [3 ]
Sadhasivam, V. [4 ]
机构
[1] Paavai Engn Coll Autonomous, Dept Math, Namakkal 637018, Tamil Nadu, India
[2] Pavai Arts & Sci Coll Women, Dept Math, Namakkal 637401, Tamil Nadu, India
[3] Sona Coll Technol Autonomous, Dept Math, Salem 636005, Tamil Nadu, India
[4] Thiruvalluvar Govt Arts Coll, Post Grad & Res Dept Math, Namakkal 637401, Tamil Nadu, India
来源
MATHEMATICAL MODELLING AND CONTROL | 2023年 / 3卷 / 02期
关键词
fractional differential equation; coincidence degree theory; resonance;
D O I
10.3934/mmc.2023012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with three-dimensional differential system of nonlinear fractional order problem D-0(alpha+) upsilon(%) = f(%, omega(%), omega l(%), omega'0(%), ..., omega(n-1)(%)), % is an element of (0, 1), D-0(beta+)nu(%) = g(%, upsilon(%), upsilon 0(%), upsilon 0f(%), ..., upsilon(n-1)(%)), % is an element of (0, 1), D-0+(gamma)omega(%) = h(%, nu(%), nu'(%), nu"(%), ..., nu(n-1)(%)), % is an element of (0, 1), with the boundary conditions, upsilon(0) = upsilon 0(0) = ... = upsilon(n-2)(0) = 0, upsilon(n-1)(0) = upsilon(n-1)(1), nu(0) = nu'(0) = ... = nu(n-2)(0) = 0, nu(n-1)(0) = nu(n-1)(1), omega(0) = omega r(0) = ... = omega(n-2)(0) = 0, omega(n-1)(0) = omega(n-1)(1), where D-0+(alpha) , D-beta(0+), D-0+(gamma) are the standard Caputo fractional derivative, n - 1 < alpha, beta, gamma <= n, n >= 2 and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条