Curvature-based interface restoration algorithm using phase-field equations

被引:0
|
作者
Lee, Seunggyu [1 ,2 ]
Choi, Yongho [3 ]
机构
[1] Korea Univ, Div Appl Math Sci, Sejong, South Korea
[2] Inst for Basic Sci Korea, Biomed Math Grp, Daejeon, South Korea
[3] Daegu Univ, Dept Comp & Informat Engn, Gyongsan, South Korea
来源
PLOS ONE | 2023年 / 18卷 / 12期
基金
新加坡国家研究基金会;
关键词
CAHN-HILLIARD EQUATION; CONSERVATIVE NUMERICAL-METHOD; HOLE-FILLING ALGORITHM; ALLEN-CAHN; MOTION; SYSTEM;
D O I
10.1371/journal.pone.0295527
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we propose a restoration algorithm for distorted objects using a curvature-driven flow. First, we capture the convex-hull shaped contour of the distorted object using the mean curvature flow. With the supplemented mass on the captured feature, we evolve the constraint mean curvature flow to a steady state, preserving the non-distorted region. With respect to the mass, we select a restorative shape by considering the square of the curvature derivative. The Allen-Cahn and Cahn-Hilliard equations are applied to the generated restored image from the implicit curvature motions represented by the order parameter. We impose the Dirichlet boundary condition for the order parameter and the Neumann boundary for the chemical potential to fix the feature and to inherit the mass conservation, respectively. We provided examples of the restoration of half-circle and parentheses-shaped objects to reconstruct a circle shape.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Benchmark Problems for the Numerical Schemes of the Phase-Field Equations
    Hwang, Youngjin
    Lee, Chaeyoung
    Kwak, Soobin
    Choi, Yongho
    Ham, Seokjun
    Kang, Seungyoon
    Yang, Junxiang
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [42] Fourier-Spectral Method for the Phase-Field Equations
    Yoon, Sungha
    Jeong, Darae
    Lee, Chaeyoung
    Kim, Hyundong
    Kim, Sangkwon
    Lee, Hyun Geun
    Kim, Junseok
    MATHEMATICS, 2020, 8 (08) : 1 - 36
  • [43] Stability of Solutions to a Caginalp Phase-Field Type Equations
    Ipopa, Mohamed Ali
    Bangola, Brice Landry Doumbe
    Ovono, Armel Andami
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 949 - 958
  • [44] Asymptotic Compactness and Attractors for Phase-Field Equations in ℝ3
    Francisco Morillas
    José Valero
    Set-Valued Analysis, 2008, 16 : 861 - 897
  • [45] Phase-field modeling by the method of lattice Boltzmann equations
    Fakhari, Abbas
    Rahimian, Mohammad H.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [46] Curvature-based distribution algorithm: rebalancing bike sharing system with agent-based simulation
    Ban, Seonghoon
    Hyun, Kyung Hoon
    JOURNAL OF VISUALIZATION, 2019, 22 (03) : 587 - 607
  • [47] Whole phase curvature-based particle positioning and size determination by digital holography
    Hasegawa, Shin-Ya
    Miaki, Takao
    APPLIED OPTICS, 2020, 59 (24) : 7201 - 7210
  • [48] Mesh Denoising Using Multi-scale Curvature-Based Saliency
    Dutta, Somnath
    Banerjee, Sumandeep
    Biswas, Prabir K.
    Bhowmick, Partha
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT II, 2015, 9009 : 507 - 516
  • [49] Incremental alternating algorithm for damage and fracture modeling using phase-field method
    Tran, Thanh Hai Tuan
    Rahmoun, Jamila
    Naceur, Hakim
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1385 - 1392
  • [50] Crack propagation prediction in heterogeneous microstructure using an efficient phase-field algorithm
    Seles, Karlo
    Jurcevic, Ante
    Tonkovic, Zdenko
    Soric, Jurica
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 100 : 289 - 297