Benchmark Problems for the Numerical Schemes of the Phase-Field Equations

被引:6
|
作者
Hwang, Youngjin [1 ]
Lee, Chaeyoung [1 ]
Kwak, Soobin [1 ]
Choi, Yongho [2 ]
Ham, Seokjun [1 ]
Kang, Seungyoon [1 ]
Yang, Junxiang [3 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Daegu Univ, Dept Math & Big Data, Gyeongsan Si Gyeongsangb 38453, Gyeongsan, South Korea
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
基金
新加坡国家研究基金会;
关键词
VARIABLE SAV APPROACH; ALLEN-CAHN; HILLIARD; ENERGY;
D O I
10.1155/2022/2751592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present benchmark problems for the numerical methods of the phase-field equations. To find appropriate benchmark problems, we first perform a linear stability analysis and then take a growth mode solution as the benchmark problem, which is closely related to the dynamics of the original governing equations. As concrete examples, we perform convergence tests of the numerical methods of the Allen-Cahn (AC) and Cahn-Hilliard (CH) equations using the proposed benchmark problems. The one- and two-dimensional computational experiments confirm the accuracy and efficiency of the proposed scheme as the benchmark problems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Revisit of Semi-Implicit Schemes for Phase-Field Equations
    Tao Tang
    AnalysisinTheoryandApplications, 2020, 36 (03) : 235 - 242
  • [2] Revisit of Semi-Implicit Schemes for Phase-Field Equations
    Tang, Tao
    ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (03) : 235 - 242
  • [3] Benchmark problems for numerical implementations of phase field models
    Jokisaari, A. M.
    Voorhees, P. W.
    Guyer, J. E.
    Warren, J.
    Heinonen, O. G.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 126 : 139 - 151
  • [4] Lack of robustness and accuracy of many numerical schemes for phase-field simulations
    Xu, Jinchao
    Xu, Xiaofeng
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (08): : 1721 - 1746
  • [5] Splitting schemes for phase-field models
    Calo, Victor
    Minev, Peter
    Puzyrev, Vladimir
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 192 - 209
  • [6] Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
    Guillen-Gonzalez, F.
    Tierra, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 354 : 67 - 85
  • [7] NUMERICAL ENERGY DISSIPATION FOR TIME-FRACTIONAL PHASE-FIELD EQUATIONS
    Quan, Chaoyu
    Tang, Tao
    Yang, Jiang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 515 - 539
  • [8] Benchmark problems for numerical schemes to passively transported interface
    Fujima, S
    Ohmori, K
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2004, 18 (04) : 317 - 322
  • [9] Chemo-mechanical benchmark for phase-field approaches
    Kannenberg, Thea
    Prahs, Andreas
    Svendsen, Bob
    Nestler, Britta
    Schneider, Daniel
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2025, 33 (01)
  • [10] Phase field benchmark problems for nucleation
    Wu, W.
    Montiel, D.
    Guyer, J. E.
    Voorhees, P. W.
    Warren, J. A.
    Wheeler, D.
    Granasy, L.
    Pusztai, T.
    Heinonen, O. G.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 193