Benchmark Problems for the Numerical Schemes of the Phase-Field Equations

被引:6
|
作者
Hwang, Youngjin [1 ]
Lee, Chaeyoung [1 ]
Kwak, Soobin [1 ]
Choi, Yongho [2 ]
Ham, Seokjun [1 ]
Kang, Seungyoon [1 ]
Yang, Junxiang [3 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Daegu Univ, Dept Math & Big Data, Gyeongsan Si Gyeongsangb 38453, Gyeongsan, South Korea
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
基金
新加坡国家研究基金会;
关键词
VARIABLE SAV APPROACH; ALLEN-CAHN; HILLIARD; ENERGY;
D O I
10.1155/2022/2751592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present benchmark problems for the numerical methods of the phase-field equations. To find appropriate benchmark problems, we first perform a linear stability analysis and then take a growth mode solution as the benchmark problem, which is closely related to the dynamics of the original governing equations. As concrete examples, we perform convergence tests of the numerical methods of the Allen-Cahn (AC) and Cahn-Hilliard (CH) equations using the proposed benchmark problems. The one- and two-dimensional computational experiments confirm the accuracy and efficiency of the proposed scheme as the benchmark problems.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Decoupled, energy stable schemes for a phase-field surfactant model
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 233 : 67 - 77
  • [22] Convergence of alternate minimization schemes for phase-field fracture and damage
    Knees, Dorothee
    Negri, Matteo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (09): : 1743 - 1794
  • [23] ERGODICITY FOR THE PHASE-FIELD EQUATIONS PERTURBED BY GAUSSIAN NOISE
    Barbu, Viorel
    Da Prato, Giuseppe
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (01) : 35 - 55
  • [24] Fourier-Spectral Method for the Phase-Field Equations
    Yoon, Sungha
    Jeong, Darae
    Lee, Chaeyoung
    Kim, Hyundong
    Kim, Sangkwon
    Lee, Hyun Geun
    Kim, Junseok
    MATHEMATICS, 2020, 8 (08) : 1 - 36
  • [25] Stability of Solutions to a Caginalp Phase-Field Type Equations
    Ipopa, Mohamed Ali
    Bangola, Brice Landry Doumbe
    Ovono, Armel Andami
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 949 - 958
  • [26] Asymptotic Compactness and Attractors for Phase-Field Equations in ℝ3
    Francisco Morillas
    José Valero
    Set-Valued Analysis, 2008, 16 : 861 - 897
  • [27] Phase-field modeling by the method of lattice Boltzmann equations
    Fakhari, Abbas
    Rahimian, Mohammad H.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [28] Numerical analysis of energy-stable Crank-Nicolson finite difference schemes for the phase-field equation
    Li, Huanrong
    Wang, Dongmei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [29] Numerical Phase-Field Model Validation for Dissolution of Minerals
    Yang, Sha
    Ukrainczyk, Neven
    Caggiano, Antonio
    Koenders, Eddie
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [30] Phase-Field Modeling and Numerical Simulation for Ice Melting
    Wang, Jian
    Lee, Chaeyoung
    Lee, Hyun Geun
    Zhang, Qimeng
    Yang, Junxiang
    Yoon, Sungha
    Park, Jintae
    Kim, Junseok
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 540 - 558