Exact bounds for acyclic higher-order recursion schemes

被引:0
|
作者
Afshari, Bahareh [1 ,2 ]
Wehr, Dominik [2 ]
机构
[1] Univ Amsterdam, Inst Logic Language & Computat, Amsterdam, Netherlands
[2] Univ Gothenburg, Dept Philosophy Linguist & Theory Sci, Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Higher-order recursion schemes; Simply typed A; -calculus; Language bounds;
D O I
10.1016/j.ic.2022.104982
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Beckmann [1] derives bounds on the length of reduction chains of classes of simply typed A.-calculus terms which are exact up-to a constant factor in their highest exponent. Afshari et al. [2] obtain similar bounds on acyclic higher-order recursion schemes (HORS) by embedding them in the simply typed A.-calculus and applying Beckmann's result. In this article, we apply Beckmann's proof strategy directly to acyclic HORS, proving exactness of the bounds on reduction chain length and obtaining exact bounds on the size of languages generated by acyclic HORS. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Higher-order Boltzmann machines and entropy bounds
    Apolloni, B
    Battistini, E
    de Falco, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (30): : 5529 - 5538
  • [32] Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic
    Biendarra, Julian
    Blanchette, Jasmin Christian
    Bouzy, Aymeric
    Desharnais, Martin
    Fleury, Mathias
    Holzl, Johannes
    Kuncar, Ondrej
    Lochbihler, Andreas
    Meier, Fabian
    Panny, Lorenz
    Popescu, Andrei
    Sternagel, Christian
    Thiemann, Rene
    Traytel, Dmitriy
    FRONTIERS OF COMBINING SYSTEMS (FROCOS 2017), 2017, 10483 : 3 - 21
  • [33] HIGHER-ORDER MONOTONIC CONVECTIVE DIFFERENCE SCHEMES
    FORESTER, CK
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (01) : 1 - 22
  • [34] Recursive marginal quantization of higher-order schemes
    McWalter, T. A.
    Rudd, R.
    Kienitz, J.
    Platen, E.
    QUANTITATIVE FINANCE, 2018, 18 (04) : 693 - 706
  • [35] HIGHER-ORDER GODUNOV SCHEMES FOR ISOTHERMAL HYDRODYNAMICS
    BALSARA, DS
    ASTROPHYSICAL JOURNAL, 1994, 420 (01): : 197 - 212
  • [36] CONSTRUCTION OF HIGHER-ORDER SYMPLECTIC SCHEMES BY COMPOSITION
    QIN, MZ
    ZHU, WJ
    COMPUTING, 1992, 47 (3-4) : 309 - 321
  • [37] A multigrid method with higher-order discretization schemes
    Varonos, AA
    Bergeles, GC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (04) : 395 - 420
  • [38] A COMPARISON OF HIGHER-ORDER BOUNDED CONVECTION SCHEMES
    CHOI, SK
    NAM, HY
    CHO, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 121 (1-4) : 281 - 301
  • [39] Gain bounds of higher-order nonlinear transfer functions
    Zhang, H
    Billings, SA
    INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (04) : 767 - 773
  • [40] Sharp constants in higher-order heat kernel bounds
    Dungey, N
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (02) : 189 - 200