Higher-order Boltzmann machines and entropy bounds

被引:0
|
作者
Apolloni, B [1 ]
Battistini, E
de Falco, D
机构
[1] Univ Milan, Dipartimento Sci Informaz, I-20122 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 30期
关键词
D O I
10.1088/0305-4470/32/30/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine some aspects of the interface area between mathematical statistics and statistical physics relevant to the study of Boltzmann machines. The Boltzmann machine learning algorithm is based on a variational principle (Gibbs' lemma for relative entropy). This fact suggests the possibility of a scheme of successive approximations: here we consider successive approximations parametrized by the order of many-body interactions among individual units. We prove bounds on the gain in relative entropy in the crucial step of adding, and estimating by Hebb's rule, a new parameter. We address the problem of providing, on the basis of local observations, upper and lower bounds on the entropy. While upper bounds are easily obtained by subadditivity, lower bounds involve localization of Hirschman bounds on a dual quantum system.
引用
收藏
页码:5529 / 5538
页数:10
相关论文
共 50 条
  • [1] Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines
    Memisevic, Roland
    Hinton, Geoffrey E.
    NEURAL COMPUTATION, 2010, 22 (06) : 1473 - 1492
  • [2] Higher-Order Factorization Machines
    Blondel, Mathieu
    Fujino, Akinori
    Ueda, Naonori
    Ishihata, Masakazu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [3] Krivine Machines and Higher-Order Schemes
    Salvati, S.
    Walukiewicz, I.
    AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT II, 2011, 6756 : 162 - 173
  • [4] Krivine machines and higher-order schemes
    Salvati, Sylvain
    Walukiewicz, Igor
    INFORMATION AND COMPUTATION, 2014, 239 : 340 - 355
  • [5] Higher-order lattice Boltzmann model for thermohydrodynamics
    Atif, Mohammad
    Namburi, Manjusha
    Ansumali, Santosh
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [6] Comparison of maximum entropy and higher-order entropy estimators
    Golan, A
    Perloff, JM
    JOURNAL OF ECONOMETRICS, 2002, 107 (1-2) : 195 - 211
  • [7] HIGHER-ORDER FUZZY ENTROPY AND HYBRID ENTROPY OF A SET
    PAL, NR
    PAL, SK
    INFORMATION SCIENCES, 1992, 61 (03) : 211 - 231
  • [8] VC dimension bounds for higher-order neurons
    Schmitt, M
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 563 - 568
  • [9] UPPER BOUNDS FOR HIGHER-ORDER POINCARE CONSTANTS
    Funano, Kei
    Sakurai, Yohei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 4415 - 4436
  • [10] Higher-order uncertainty bounds for mixed states
    Belfield, Alex J.
    Brody, Dorje C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (43)