On stability and regularization for data-driven solution of parabolic inverse source problems

被引:5
|
作者
Zhang, Mengmeng [1 ,2 ,3 ]
Li, Qianxiao [4 ]
Liu, Jijun [2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[3] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
[4] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
基金
新加坡国家研究基金会; 国家重点研发计划; 中国国家自然科学基金;
关键词
Available online xxxx; Deep neural networks; Inverse source problem; Generalization error estimates; Numerics; RIGHT-HAND SIDE; HEAT-SOURCE; SPACEWISE; NETWORKS; EQUATION; ALGORITHM; BOUNDARY; TERM;
D O I
10.1016/j.jcp.2022.111769
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The diffusion process from some internal source arising in engineering situations can be mathematically described by a parabolic system. We consider an inverse source problem for parabolic system using parametric approximations, where deep neural networks (DNNs) are used to approximate the solution of the inverse problem. First, we prove generalization error estimates depending on training errors and data noise levels by establishing conditional stability of the inverse problem. Following our analysis, we propose a new loss function involving the derivative of the residuals for PDE and measurement data. These extra terms effectively induce higher regularity in solution to deal with the ill-posedness of the inverse problem. Using these regularization terms, we develop reconstruction schemes and demonstrate the effectiveness of our proposed methodology on a number of test problems. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Numerical Solution to a Class of Inverse Problems for Parabolic Equation
    Rahimov A.B.
    Rahimov, A.B. (anar_r@yahoo.com), 2017, Springer Science and Business Media, LLC (53) : 392 - 402
  • [42] Multichannel absorption compensation with a data-driven structural regularization
    Ma, Xiong
    Li, Guofa
    Li, Hao
    Yang, Wuyang
    GEOPHYSICS, 2020, 85 (01) : V71 - V80
  • [43] Improving the Robustness of Data-Driven Fuzzy Systems with Regularization
    Lughofer, Edwin
    Kindermann, Stefan
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 703 - +
  • [44] A data-driven regularization strategy for statistical CT reconstruction
    Clark, D. P.
    Badea, C. T.
    MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [45] On the solution of parabolic and hyperbolic inverse heat conduction problems
    Al-Khalidy, N
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (23) : 3731 - 3740
  • [46] Lipschitz stability in inverse parabolic problems by the Carleman estimate
    Imanuvilov, OY
    Yamamoto, M
    INVERSE PROBLEMS, 1998, 14 (05) : 1229 - 1245
  • [47] Data-Driven Regularization Parameter Selection in Dynamic MRI
    Hanhela, Matti
    Grohn, Olli
    Kettunen, Mikko
    Niinimaki, Kati
    Vauhkonen, Marko
    Kolehmainen, Ville
    JOURNAL OF IMAGING, 2021, 7 (02)
  • [48] Data-driven inverse optimization with imperfect information
    Peyman Mohajerin Esfahani
    Soroosh Shafieezadeh-Abadeh
    Grani A. Hanasusanto
    Daniel Kuhn
    Mathematical Programming, 2018, 167 : 191 - 234
  • [49] Topology Aware Data-Driven Inverse Kinematics
    Ho, Edmond S. L.
    Shum, Hubert P. H.
    Cheung, Yiu-ming
    Yuen, P. C.
    COMPUTER GRAPHICS FORUM, 2013, 32 (07) : 61 - 70
  • [50] DATA-DRIVEN INVERSE DESIGN METHOD FOR TURBOMACHINERY
    So, Kwok Kai
    Salamanca, Luis
    Ozdemir, Firat
    Perez-Cruz, Fernando
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,