On stability and regularization for data-driven solution of parabolic inverse source problems

被引:5
|
作者
Zhang, Mengmeng [1 ,2 ,3 ]
Li, Qianxiao [4 ]
Liu, Jijun [2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[3] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
[4] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
基金
新加坡国家研究基金会; 国家重点研发计划; 中国国家自然科学基金;
关键词
Available online xxxx; Deep neural networks; Inverse source problem; Generalization error estimates; Numerics; RIGHT-HAND SIDE; HEAT-SOURCE; SPACEWISE; NETWORKS; EQUATION; ALGORITHM; BOUNDARY; TERM;
D O I
10.1016/j.jcp.2022.111769
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The diffusion process from some internal source arising in engineering situations can be mathematically described by a parabolic system. We consider an inverse source problem for parabolic system using parametric approximations, where deep neural networks (DNNs) are used to approximate the solution of the inverse problem. First, we prove generalization error estimates depending on training errors and data noise levels by establishing conditional stability of the inverse problem. Following our analysis, we propose a new loss function involving the derivative of the residuals for PDE and measurement data. These extra terms effectively induce higher regularity in solution to deal with the ill-posedness of the inverse problem. Using these regularization terms, we develop reconstruction schemes and demonstrate the effectiveness of our proposed methodology on a number of test problems. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Stability in Lq-norm for inverse source parabolic problems
    Melnig, Elena-Alexandra
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (06): : 797 - 814
  • [12] Lipschitz stability in inverse source problems for a singular parabolic equation
    Anh, Cung The
    Toi, Vu Manh
    Tuan, Tran Quoc
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2805 - 2824
  • [13] ON REGULARIZATION AND DISCRETIZATION CONTROL FOR THE NUMERICAL SOLUTION OF INVERSE PROBLEMS IN PARABOLIC EQUATIONS.
    Hofmann, Bernd
    Friedrich, Volkmar
    BIT (Copenhagen), 1986, 26 (01): : 80 - 92
  • [14] ON REGULARIZATION AND DISCRETIZATION CONTROL FOR THE NUMERICAL-SOLUTION OF INVERSE PROBLEMS IN PARABOLIC EQUATIONS
    HOFMANN, B
    FRIEDRICH, V
    BIT, 1986, 26 (01): : 80 - 92
  • [15] Solving inverse problems using data-driven models
    Arridge, Simon
    Maass, Peter
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    ACTA NUMERICA, 2019, 28 : 1 - 174
  • [16] Data-driven cortex parcelling: A regularization tool for the EEG/MEG inverse problem
    Daunizeau, J
    Mattout, M
    Goulard, B
    Lina, JM
    Benali, H
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 1343 - 1346
  • [17] Data-driven combined state and parameter reduction for inverse problems
    Himpe, Christian
    Ohlberger, Mario
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) : 1343 - 1364
  • [18] CONSISTENCY ANALYSIS OF BILEVEL DATA-DRIVEN LEARNING IN INVERSE PROBLEMS
    Chada, Neil K.
    Schillings, Claudia
    Tong, Xin T.
    Weissmann, Simon
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 123 - 164
  • [19] DATA-DRIVEN APPROACH FOR THE FLOQUET PROPAGATOR INVERSE PROBLEM SOLUTION
    Hvatov, Alexander
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3813 - 3817
  • [20] Data-driven combined state and parameter reduction for inverse problems
    Christian Himpe
    Mario Ohlberger
    Advances in Computational Mathematics, 2015, 41 : 1343 - 1364