DeepSPInN - deep reinforcement learning for molecular structure prediction from infrared and 13C NMR spectra

被引:6
|
作者
Devata, Sriram [1 ]
Sridharan, Bhuvanesh [1 ]
Mehta, Sarvesh [1 ]
Pathak, Yashaswi [1 ]
Laghuvarapu, Siddhartha [1 ]
Varma, Girish [2 ]
Priyakumar, U. Deva [1 ]
机构
[1] Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad, India
[2] Int Inst Informat Technol, Ctr Secur Theory & Algorithms Res, Hyderabad, India
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 04期
关键词
STRUCTURE ELUCIDATION; NEURAL-NETWORKS; INFORMATION; DATABASE; GAME; GO;
D O I
10.1039/d4dd00008k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and interpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure when given infrared and C-13 nuclear magnetic resonance spectra by formulating the molecular structure prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and C-13 nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated molecular spectral analysis.
引用
收藏
页码:818 / 829
页数:12
相关论文
共 50 条
  • [41] STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C—NMR METHOD Ⅰ. ASSIGNMENT FOR UNSATURAT CARBONS SPECTRA
    焦书科
    陈晓农
    胡力平
    严宝珍
    Chinese Journal of Polymer Science, 1990, (01) : 17 - 24
  • [42] Modeling of Asphaltenes: Assessment of Sensitivity of 13C Solid State NMR to Molecular Structure
    Badu, Shyam
    Pimienta, Ian S. O.
    Orendt, Anita M.
    Pugmire, Ronald J.
    Facelli, Julio C.
    ENERGY & FUELS, 2012, 26 (04) : 2161 - 2167
  • [43] Calculation of 13C NMR spectra of cellulose derived from semiempirical methods.
    Koch, FT
    Sternberg, U
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U271 - U271
  • [44] Molecular dynamics in supercooled glycerol: Results from 13C NMR spectroscopy
    Jain, P.
    Levchenko, A.
    Yu, P.
    Sen, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):
  • [45] Prediction of 13C NMR chemical shifts in substituted naphthalenes
    C. A. L. Mahaffy
    J. R. Nanney
    R. E. Jetton
    Theoretical Chemistry Accounts, 1999, 101 : 365 - 370
  • [46] Prediction of 13C NMR chemical shifts in substituted naphthalenes
    Mahaffy, CAL
    Nanney, JR
    Jetton, RE
    THEORETICAL CHEMISTRY ACCOUNTS, 1999, 101 (06) : 365 - 370
  • [47] 13C NMR spectra for IPR isomers of fullerene C86
    Sun, GY
    Kertesz, M
    CHEMICAL PHYSICS, 2002, 276 (02) : 107 - 114
  • [48] Prediction of Natural Product Classes Using Machine Learning and 13C NMR Spectroscopic Data
    Martinez-Trevino, Saul H.
    Uc-Cetina, Victor
    Fernandez-Herrera, Maria A.
    Merino, Gabriel
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (07) : 3376 - 3386
  • [49] Automated structure elucidation of organic molecules from 13C NMR spectra using genetic algorithms and neural networks
    Meiler, J
    Will, M
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (06): : 1535 - 1546
  • [50] The structure of the polysaccharide from Hymenocladia sanguinea through 13C NMR spectroscopy
    Miller, IJ
    BOTANICA MARINA, 2001, 44 (03) : 245 - 251