DeepSPInN - deep reinforcement learning for molecular structure prediction from infrared and 13C NMR spectra

被引:6
|
作者
Devata, Sriram [1 ]
Sridharan, Bhuvanesh [1 ]
Mehta, Sarvesh [1 ]
Pathak, Yashaswi [1 ]
Laghuvarapu, Siddhartha [1 ]
Varma, Girish [2 ]
Priyakumar, U. Deva [1 ]
机构
[1] Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad, India
[2] Int Inst Informat Technol, Ctr Secur Theory & Algorithms Res, Hyderabad, India
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 04期
关键词
STRUCTURE ELUCIDATION; NEURAL-NETWORKS; INFORMATION; DATABASE; GAME; GO;
D O I
10.1039/d4dd00008k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and interpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure when given infrared and C-13 nuclear magnetic resonance spectra by formulating the molecular structure prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and C-13 nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated molecular spectral analysis.
引用
收藏
页码:818 / 829
页数:12
相关论文
共 50 条
  • [21] 13C–13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin
    Manolis Matzapetakis
    Paola Turano
    Elizabeth C. Theil
    Ivano Bertini
    Journal of Biomolecular NMR, 2007, 38 : 237 - 242
  • [22] Theoretical Study on Structure, Electronic Spectra and 13C NMR spectra of C60O3
    Tian, W.-Q.
    Feng, J.-K.
    Ge, M.-F.
    Ren, A.-M.
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/ Chemical Journal of Chinese Universities, 19 (03):
  • [23] Theoretical study on structure, electronic spectra and 13C NMR spectra of C60O3
    Tian, WQ
    Feng, JK
    Ge, MF
    Ren, AM
    Li, ZR
    Huang, XR
    Sun, CC
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1998, 19 (03): : 446 - 450
  • [24] Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra
    Lille, Ü
    Heinmaa, I
    Pehk, T
    FUEL, 2003, 82 (07) : 799 - 804
  • [25] 1H and 13C NMR spectra and structure of a dimerization product of bimakalin
    Pachler, KGR
    MAGNETIC RESONANCE IN CHEMISTRY, 1998, 36 (06) : 436 - 441
  • [26] Conditional Molecular Generation Net Enables Automated Structure Elucidation Based on 13C NMR Spectra and Prior Knowledge
    Yao, Lin
    Yang, Minjian
    Song, Jianfei
    Yang, Zhuo
    Sun, Hanyu
    Shi, Hui
    Liu, Xue
    Ji, Xiangyang
    Deng, Yafeng
    Wang, Xiaojian
    ANALYTICAL CHEMISTRY, 2023, 95 (12) : 5393 - 5401
  • [27] Cross-Modal Retrieval between 13C NMR Spectra and Structures for Compound Identification Using Deep Contrastive Learning
    Yang, Zhuo
    Song, Jianfei
    Yang, Minjian
    Yao, Lin
    Zhang, Jiahua
    Shi, Hui
    Ji, Xiangyang
    Deng, Yafeng
    Wang, Xiaojian
    ANALYTICAL CHEMISTRY, 2021, 93 (50) : 16947 - 16955
  • [28] Assignment of finely resolved 13C NMR spectra of polyacrylonitrile
    Katsuraya, K
    Hatanaka, K
    Matsuzaki, K
    Minagawa, M
    POLYMER, 2001, 42 (14) : 6323 - 6326
  • [29] SIGNALS OF ISOTOPOMERS IN 13C NMR SPECTRA OF POLYISOPRENE RUBBERS
    Makhiyanov, N.
    JOURNAL OF APPLIED SPECTROSCOPY, 2019, 85 (06) : 1037 - 1043
  • [30] 13C HIGH RESOLUTION NMR SPECTRA OF SOLID COALS
    叶朝辉
    李新安
    ScienceBulletin, 1986, (16) : 1100 - 1103