DeepSPInN - deep reinforcement learning for molecular structure prediction from infrared and 13C NMR spectra

被引:6
|
作者
Devata, Sriram [1 ]
Sridharan, Bhuvanesh [1 ]
Mehta, Sarvesh [1 ]
Pathak, Yashaswi [1 ]
Laghuvarapu, Siddhartha [1 ]
Varma, Girish [2 ]
Priyakumar, U. Deva [1 ]
机构
[1] Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad, India
[2] Int Inst Informat Technol, Ctr Secur Theory & Algorithms Res, Hyderabad, India
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 04期
关键词
STRUCTURE ELUCIDATION; NEURAL-NETWORKS; INFORMATION; DATABASE; GAME; GO;
D O I
10.1039/d4dd00008k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and interpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure when given infrared and C-13 nuclear magnetic resonance spectra by formulating the molecular structure prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to predict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and C-13 nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated molecular spectral analysis.
引用
收藏
页码:818 / 829
页数:12
相关论文
共 50 条
  • [1] Diterpene structure elucidation from 13C NMR-spectra with machine learning
    Dzeroski, S
    Schulze-Kremer, S
    Heidtke, KR
    Siems, K
    Wettschereck, D
    INTELLIGENT DATA ANALYSIS IN MEDICINE AND PHARMACOLOGY, 1997, 414 : 207 - 225
  • [2] 13C NMR spectra and electronic structure of alkenylalanes
    R. R. Muslukhov
    L. M. Khalilov
    I. R. Ramazanov
    A. Z. Sharipova
    A. G. Ibragimov
    U. M. Dzhemilev
    Russian Chemical Bulletin, 1997, 46 : 2082 - 2085
  • [3] 13C NMR spectra and electronic structure of alkenylalanes
    Muslukhov, RR
    Khalilov, LM
    Ramazanov, IR
    Sharipova, AZ
    Ibragimov, AG
    Dzhemilev, UM
    RUSSIAN CHEMICAL BULLETIN, 1997, 46 (12) : 2082 - 2085
  • [4] Applying ILP to diterpene structure elucidation from 13C NMR spectra
    Dzeroski, S
    Schulze-Kremer, S
    Heidtke, KR
    Siems, K
    Wettschereck, D
    INDUCTIVE LOGIC PROGRAMMING, 1997, 1314 : 41 - 54
  • [5] 13C NMR SPECTRA OF BIOPOLYMERS
    LAUTERBU.PC
    APPLIED SPECTROSCOPY, 1969, 23 (06) : 650 - &
  • [6] 13C NMR spectra of halocarbons
    Foris, A
    MAGNETIC RESONANCE IN CHEMISTRY, 2001, 39 (07) : 386 - 398
  • [7] Diterpene structure elucidation from 13C NMR spectra with Inductive Logic Programming
    Dzeroski, S
    Schulze-Kremer, S
    Heidtke, KR
    Siems, K
    Wettschereck, D
    Blockeel, H
    APPLIED ARTIFICIAL INTELLIGENCE, 1998, 12 (05) : 363 - 383
  • [8] Genius:: A genetic algorithm for automated structure elucidation from 13C NMR spectra
    Meiler, J
    Will, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (09) : 1868 - 1870
  • [9] Satellite structure of DNP enhanced 13C NMR spectra in diamond
    G.J. Hill
    J. Wu
    M.J.R. Hoch
    Hyperfine Interactions, 1999, 120-121 : 81 - 86
  • [10] Satellite structure of DNP enhanced 13C NMR spectra in diamond
    Hill, GJ
    Wu, J
    Hoch, MJR
    HYPERFINE INTERACTIONS, 1999, 120 (1-8): : 81 - 86