Ultrafast quantum key distribution using fully parallelized quantum channels

被引:15
|
作者
Terhaar, Robin [1 ]
Roediger, Jasper [2 ]
Haeussler, Matthias [1 ]
Wahl, Michael [3 ]
Gehring, Helge [1 ]
Wolff, Martin A. [1 ]
Beutel, Fabian [1 ]
Hartmann, Wladick [1 ]
Walter, Nicolai [1 ]
Hanke, Jonas [2 ]
Hanne, Peter [2 ]
Walenta, Nino [2 ]
Diedrich, Maximilian [2 ]
Perlot, Nicolas [2 ]
Tillmann, Max [3 ]
Roehlicke, Tino [3 ]
Ahangarianabhari, Mahdi [3 ]
Schuck, Carsten [1 ]
Pernice, Wolfram H. P. [4 ]
机构
[1] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[2] Fraunhofer Heinrich Hertz Inst, Einsteinufer 37, D-10587 Berlin, Germany
[3] PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
SINGLE-PHOTON DETECTORS;
D O I
10.1364/OE.469053
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The field of quantum information processing offers secure communication protected by the laws of quantum mechanics and is on the verge of finding wider application for the information transfer of sensitive data. To improve cost-efficiency, extensive research is being carried out on the various components required for high data throughput using quantum key distribution (QKD). Aiming for an application-oriented solution, we report the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelengths. We designed a rack-sized multichannel superconducting nanowire single photon detector (SNSPD) system, as well as a highly parallelized time-correlated single photon counting (TCSPC) unit. Our system is linked to an FPGA-controlled QKD evaluation setup for continuous operation, allowing us to achieve high secret key rates using a coherent-one-way protocol. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:2675 / 2688
页数:14
相关论文
共 50 条
  • [41] Proof-of-Principle Demonstration of Fully Passive Quantum Key Distribution
    Hu, Chengqiu
    Wang, Wenyuan
    Chan, Kai-Sum
    Yuan, Zhenghan
    Lo, Hoi-Kwong
    PHYSICAL REVIEW LETTERS, 2023, 131 (11)
  • [42] Quantum Key Distribution Using a χ-Type State
    Gan Gao
    International Journal of Theoretical Physics, 2010, 49 : 1870 - 1877
  • [43] Quantum Key Distribution Using a χ-Type State
    Gao, Gan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1870 - 1877
  • [44] Quantum key distribution using multilevel encoding
    Bourennane, M
    Karlsson, A
    Björk, G
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 295 - 298
  • [45] Quantum key distribution
    不详
    COMPUTER, 2000, 33 (01) : 42 - 42
  • [46] SIGNIFICANCE OF KEY DISTRIBUTION USING QUANTUM CRYPTOGRAPHY
    Padmavathi, Vurubindi
    Vardhan, Bulusu Vishnu
    Krishna, Addepalli V. N.
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2018, 14 (01): : 371 - 377
  • [47] Quantum Key Distribution
    Seshu, Ch.
    GLOBAL E-SECURITY, PROCEEDINGS, 2008, 12 : 200 - 209
  • [48] Quantum key distribution
    Ouellette, Jennifer
    Industrial Physicist, 2004, 10 (06): : 22 - 25
  • [49] Quantum secure communication using hybrid post-quantum cryptography and quantum key distribution
    Aquina, Nick
    Rommel, Simon
    Monroy, Idelfonso Tafur
    2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,
  • [50] Quantum key distribution with a reference quantum state
    Molotkov, S. N.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2011, 113 (05) : 743 - 754