Ultrafast quantum key distribution using fully parallelized quantum channels

被引:15
|
作者
Terhaar, Robin [1 ]
Roediger, Jasper [2 ]
Haeussler, Matthias [1 ]
Wahl, Michael [3 ]
Gehring, Helge [1 ]
Wolff, Martin A. [1 ]
Beutel, Fabian [1 ]
Hartmann, Wladick [1 ]
Walter, Nicolai [1 ]
Hanke, Jonas [2 ]
Hanne, Peter [2 ]
Walenta, Nino [2 ]
Diedrich, Maximilian [2 ]
Perlot, Nicolas [2 ]
Tillmann, Max [3 ]
Roehlicke, Tino [3 ]
Ahangarianabhari, Mahdi [3 ]
Schuck, Carsten [1 ]
Pernice, Wolfram H. P. [4 ]
机构
[1] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[2] Fraunhofer Heinrich Hertz Inst, Einsteinufer 37, D-10587 Berlin, Germany
[3] PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
SINGLE-PHOTON DETECTORS;
D O I
10.1364/OE.469053
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The field of quantum information processing offers secure communication protected by the laws of quantum mechanics and is on the verge of finding wider application for the information transfer of sensitive data. To improve cost-efficiency, extensive research is being carried out on the various components required for high data throughput using quantum key distribution (QKD). Aiming for an application-oriented solution, we report the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelengths. We designed a rack-sized multichannel superconducting nanowire single photon detector (SNSPD) system, as well as a highly parallelized time-correlated single photon counting (TCSPC) unit. Our system is linked to an FPGA-controlled QKD evaluation setup for continuous operation, allowing us to achieve high secret key rates using a coherent-one-way protocol. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:2675 / 2688
页数:14
相关论文
共 50 条
  • [31] Quantum key distribution with quantum walks
    Vlachou, Chrysoula
    Krawec, Walter
    Mateus, Paulo
    Paunkovic, Nikola
    Souto, Andre
    QUANTUM INFORMATION PROCESSING, 2018, 17 (11)
  • [32] Quantum State Preparation for Quantum Key Distribution Using PLC Module
    Wu, Dan
    Chen, Shaokang
    Cui, Pengwei
    Ma, Junchi
    Chen, Wei
    Zhang, Jiashun
    Wang, Yue
    Li, Jianguang
    An, Junming
    IEEE PHOTONICS JOURNAL, 2023, 15 (06):
  • [33] Quantum key distribution using quantum-correlated photon sources
    P.J. Edwards
    G.H. Pollard
    W.N. Cheung
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 18 (2): : 147 - 153
  • [34] Quantum key distribution using a two-way quantum channel
    Lucamarini, Marco
    Mancini, Stefano
    THEORETICAL COMPUTER SCIENCE, 2014, 560 : 46 - 61
  • [35] Quantum key distribution using a series of quantum correlated photon pairs
    Inoue, K
    PHYSICAL REVIEW A, 2005, 71 (03):
  • [36] Quantum key distribution using quantum-correlated photon sources
    Edwards, PJ
    Pollard, GH
    Cheung, WN
    EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (02): : 147 - 153
  • [37] Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride
    Al-Juboori, Ali
    Zeng, Helen Zhi Jie
    Nguyen, Minh Anh Phan
    Ai, Xiaoyu
    Laucht, Arne
    Solntsev, Alexander
    Toth, Milos
    Malaney, Robert
    Aharonovich, Igor
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (09)
  • [38] Quantum key distribution protocol using orthogonal product quantum states
    Zhao, Qiu-Yu
    Zhang, De-Xi
    Li, Xiao-Yu
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2008, 37 (03): : 401 - 403
  • [39] A fully passive transmitter for decoy-state quantum key distribution
    Zapatero, Victor
    Wang, Wenyuan
    Curty, Marcos
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
  • [40] Fully passive measurement-device-independent quantum key distribution
    Li, Jinjie
    Wang, Wenyuan
    Lo, Hoi-Kwong
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):