A graph neural network incorporating spatio-temporal information for location recommendation

被引:1
|
作者
Chen, Yunliang [1 ]
Huang, Guoquan [1 ]
Wang, Yuewei [1 ]
Huang, Xiaohui [1 ,2 ]
Min, Geyong [3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430070, Hubei, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430070, Hubei, Peoples R China
[3] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, Devon, England
基金
中国国家自然科学基金;
关键词
Location social networks; Location recommendation; Negative sampling; Graph neural networks;
D O I
10.1007/s11280-023-01193-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Location recommendation is at the core of location-based service, while recommendation based on graph neural networks (GNNs) has recently flourished, and for location recommendation tasks, GNN-based approaches are equally applicable. To provide fair location recommendation services for multi-users, correlation information between non-adjacent locations and non-consecutive visits is essential information in understanding user behavior. The key to GNN-based location recommendation is how to use GNNs to learn embedding representations for users and locations according to their neighbors. Existing approaches usually focus on how to aggregate information from the perspective of spatial structural information, but temporal information about neighboring nodes in the graph has not been fully exploited. In this paper, a GNN location recommendation model, STAGNN, is proposed to incorporate spatio-temporal information to support fairness-driven location-based service. STAGNN facilitates the progression from spatial to spatio-temporal by generating spatio-temporal embeddings from the perspective of spatial structural information and temporal information. STAGNN also explicitly uses spatio-temporal information of all check-ins through an extended attention layer, an improvement that incorporates non-adjacent locations and non-consecutive visits between point-to-point interactions into the learning of user/location embedding representations with significant spatio-temporal effects. STAGNN also employs a multi-head attention mechanism. Experimental results demonstrate that STAGNN brings a good improvement in GNN-based location recommendation, outperforming the optimal baseline by 6%-11% on the three datasets under the HR@20 evaluation metric.
引用
收藏
页码:3633 / 3654
页数:22
相关论文
共 50 条
  • [41] Graph-Enhanced Spatio-Temporal Interval Aware Network for Next POI Recommendation in Mobile Environment
    Zhang, Xu
    Liu, Deao
    Yan, Liang
    Zhang, Zhiqing
    Li, Yan
    JOURNAL OF INTERNET TECHNOLOGY, 2024, 25 (04): : 619 - 628
  • [42] Analysis of Spatio-Temporal Neural Activities by Artificial Neural Network
    Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
    不详
    IEEJ Trans. Electron. Inf. Syst., 2007, 10 (1632-1641+21):
  • [43] A Survey on Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Zhang, Can
    Lei, Minglong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1417 - 1423
  • [44] Spatio-Temporal Transformer Recommender: Next Location Recommendation with Attention Mechanism by Mining the Spatio-Temporal Relationship between Visited Locations
    Xu, Shuqiang
    Huang, Qunying
    Zou, Zhiqiang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (02)
  • [45] Hierarchical Spatio-Temporal Graph Neural Networks for Pandemic Forecasting
    Ma, Yihong
    Gerard, Patrick
    Tian, Yijun
    Guo, Zhichun
    Chawla, Nitesh V.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1481 - 1490
  • [46] AutoSTG: Neural Architecture Search for Predictions of Spatio-Temporal Graph
    Pan, Zheyi
    Ke, Songyu
    Yang, Xiaodu
    Liang, Yuxuan
    Yu, Yong
    Zhang, Junbo
    Zheng, Yu
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1846 - 1855
  • [47] Spatio-Temporal Graph Neural Networks for Aggregate Load Forecasting
    Eandi, Simone
    Cini, Andrea
    Lukovic, Slobodan
    Alippi, Cesare
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [48] On the inclusion of spatial information for spatio-temporal neural networks
    de Medrano, Rodrigo
    Aznarte, Jose L.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (21): : 14723 - 14740
  • [49] Urban Region Profiling With Spatio-Temporal Graph Neural Networks
    Hou, Mingliang
    Xia, Feng
    Gao, Haoran
    Chen, Xin
    Chen, Honglong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (06) : 1736 - 1747
  • [50] Efficient Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Lubarsky, Yackov
    Gaissinski, Alexei
    Kisilev, Pavel
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 109 - 120