A graph neural network incorporating spatio-temporal information for location recommendation

被引:1
|
作者
Chen, Yunliang [1 ]
Huang, Guoquan [1 ]
Wang, Yuewei [1 ]
Huang, Xiaohui [1 ,2 ]
Min, Geyong [3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430070, Hubei, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430070, Hubei, Peoples R China
[3] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, Devon, England
基金
中国国家自然科学基金;
关键词
Location social networks; Location recommendation; Negative sampling; Graph neural networks;
D O I
10.1007/s11280-023-01193-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Location recommendation is at the core of location-based service, while recommendation based on graph neural networks (GNNs) has recently flourished, and for location recommendation tasks, GNN-based approaches are equally applicable. To provide fair location recommendation services for multi-users, correlation information between non-adjacent locations and non-consecutive visits is essential information in understanding user behavior. The key to GNN-based location recommendation is how to use GNNs to learn embedding representations for users and locations according to their neighbors. Existing approaches usually focus on how to aggregate information from the perspective of spatial structural information, but temporal information about neighboring nodes in the graph has not been fully exploited. In this paper, a GNN location recommendation model, STAGNN, is proposed to incorporate spatio-temporal information to support fairness-driven location-based service. STAGNN facilitates the progression from spatial to spatio-temporal by generating spatio-temporal embeddings from the perspective of spatial structural information and temporal information. STAGNN also explicitly uses spatio-temporal information of all check-ins through an extended attention layer, an improvement that incorporates non-adjacent locations and non-consecutive visits between point-to-point interactions into the learning of user/location embedding representations with significant spatio-temporal effects. STAGNN also employs a multi-head attention mechanism. Experimental results demonstrate that STAGNN brings a good improvement in GNN-based location recommendation, outperforming the optimal baseline by 6%-11% on the three datasets under the HR@20 evaluation metric.
引用
收藏
页码:3633 / 3654
页数:22
相关论文
共 50 条
  • [12] Explainable Spatio-Temporal Graph Neural Networks
    Tang, Jiabin
    Xia, Lianghao
    Huang, Chao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2432 - 2441
  • [13] Graph Neural Processes for Spatio-Temporal Extrapolation
    Hu, Junfeng
    Liang, Yuxuan
    Fan, Zhencheng
    Chen, Hongyang
    Zheng, Yu
    Zimmermann, Roger
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 752 - 763
  • [14] Spatio-Temporal Digraph Convolutional Network-Based Taxi Pickup Location Recommendation
    Zhang, Yan
    Shen, Guojiang
    Han, Xiao
    Wang, Wei
    Kong, Xiangjie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 394 - 403
  • [15] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [16] STAC-HNN: a spatio-temporal auto-correlation based location recommendation using hypergraph neural network
    Jianxing Zhou
    Jing Lu
    Lu, Jing (jing.lu@usst.edu.cn), 2025, 16 (01)
  • [17] Incorporating Temporal Information for Recommendation in Heterogeneous Information Network
    Ling, Yanxiang
    Liang, Zheng
    Yang, Wenjing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 103 - 107
  • [18] Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network
    Liu, Jiayang
    Wang, Xiaosun
    Xie, Fuqi
    Wu, Shijing
    Li, Deng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [19] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [20] MGCN: Dynamic Spatio-Temporal Multi-Graph Convolutional Neural Network
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,