NEAR-OPTIMAL APPROXIMATION METHODS FOR ELLIPTIC PDES WITH LOGNORMAL COEFFICIENTS

被引:2
|
作者
Cohen, Albert [1 ]
Migliorati, Giovanni [1 ]
机构
[1] Sorbonne Univ, UPMC Univ Paris 06, CNRS, UMR 7598,Lab Jacques Louis Lion, 4 Pl Jussieu, F-75005 Paris, France
关键词
EQUATIONS;
D O I
10.1090/mcom/3825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form - div(a backward difference u) = f where a = exp(b) and b is a Gaussian random field. The approximant of the solution u is an n -term polynomial expansion in the scalar Gaussian random variables that parametrize b. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in Bachmayr, Cohen, DeVore, and Migliorati [ESAIM Math. Model. Numer. Anal. 51 (2017), pp. 341-363] for best n -term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with b as the Brownian bridge confirm our theoretical findings.
引用
收藏
页码:1665 / 1691
页数:27
相关论文
共 50 条
  • [21] SPARSE POLYNOMIAL APPROXIMATION OF PARAMETRIC ELLIPTIC PDES. PART I: AFFINE COEFFICIENTS
    Bachmayr, Markus
    Cohen, Albert
    Migliorati, Giovanni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2017, 51 (01) : 321 - 339
  • [22] Galerkin approximation for elliptic PDEs on spheres
    Le Gia, QT
    JOURNAL OF APPROXIMATION THEORY, 2004, 130 (02) : 125 - 149
  • [23] ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS
    Beck, Joakim
    Tempone, Raul
    Nobile, Fabio
    Tamellini, Lorenzo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09):
  • [24] Near-optimal parameters for Tikhonov and other regularization methods
    O'Leary, DP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04): : 1161 - 1171
  • [25] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [26] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600
  • [27] Near-Optimal Straggler Mitigation for Distributed Gradient Methods
    Li, Songze
    Kalan, Seyed Mohammadreza Mousavi
    Avestimehr, A. Salman
    Soltanolkotabi, Mahdi
    2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 857 - 866
  • [28] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [29] Quasi-optimal Nonconforming Approximation of Elliptic PDEs with Contrasted Coefficients and H1+r, r > 0, Regularity
    Ern, Alexandre
    Guermond, Jean-Luc
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (05) : 1273 - 1308
  • [30] Near-Optimal Sampling Strategies for Multivariate Function Approximation on General Domains
    Adcock, Ben
    Cardenas, Juan M.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (03): : 607 - 630