Near-optimal parameters for Tikhonov and other regularization methods

被引:46
|
作者
O'Leary, DP [1 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[3] ETH Zurich, Dept Informat, Zurich, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2001年 / 23卷 / 04期
关键词
ill-posed problems; regularization; Tikhonov;
D O I
10.1137/S1064827599354147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Choosing the regularization parameter for an ill-posed problem is an art based on good heuristics and prior knowledge of the noise in the observations. In this work, we propose choosing the parameter, without a priori information, by approximately minimizing the distance between the true solution to the discrete problem and the family of regularized solutions. We demonstrate the usefulness of this approach for Tikhonov regularization and for an alternate family of solutions. Further, we prove convergence of the regularization parameter to zero as the standard deviation of the noise goes to zero.
引用
收藏
页码:1161 / 1171
页数:11
相关论文
共 50 条
  • [1] Tikhonov regularization based on near-optimal regularization parameter with application to capacitance tomography image reconstruction
    Sun, Ning
    Peng, Li-Hui
    Zhang, Bao-Fen
    [J]. Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing, 2004, 19 (04): : 429 - 432
  • [2] Near-optimal regularization parameters for applications in computer vision
    Yang, CJ
    Duraiswami, R
    Davis, L
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 569 - 573
  • [3] Near-optimal Parameter Selection Methods for l2 Regularization
    Ballal, Tarig
    Suliman, Mohamed
    Al-Naffouri, Tareq Y.
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1295 - 1299
  • [4] Ising Machines' Dynamics and Regularization for Near-Optimal MIMO Detection
    Singh, Abhishek Kumar
    Jamieson, Kyle
    McMahon, Peter L. L.
    Venturelli, Davide
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 11080 - 11094
  • [5] Optimal Tikhonov regularization for DEER spectroscopy
    Edwards, Thomas H.
    Stoll, Stefan
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2018, 288 : 58 - 68
  • [6] A new choice rule for regularization parameters in Tikhonov regularization
    Ito, Kazufumi
    Jin, Bangti
    Zou, Jun
    [J]. APPLICABLE ANALYSIS, 2011, 90 (10) : 1521 - 1544
  • [7] Near-optimal selection of encoding parameters for audio coding
    Aggarwal, A
    Regunathan, SL
    Rose, K
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3269 - 3272
  • [8] Arnoldi-Tikhonov regularization methods
    Lewis, Bryan
    Reichel, Lothar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (01) : 92 - 102
  • [9] ON KRYLOV PROJECTION METHODS AND TIKHONOV REGULARIZATION
    Gazzola, Silvia
    Novati, Paolo
    Russo, Maria Rosaria
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 83 - 123
  • [10] Near-Optimal Straggler Mitigation for Distributed Gradient Methods
    Li, Songze
    Kalan, Seyed Mohammadreza Mousavi
    Avestimehr, A. Salman
    Soltanolkotabi, Mahdi
    [J]. 2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 857 - 866