Pragmatic screening for heart failure in the general population using an electrocardiogram-based neural network

被引:2
|
作者
Surendra, Kishore [1 ]
Nuernberg, Sylvia [2 ]
Bremer, Jan P. [1 ,3 ]
Knorr, Marius S. [1 ,3 ]
Ueckert, Frank [2 ]
Wenzel, Jan Per [1 ]
Kellen, Ramona Bei Der [1 ]
Westermann, Dirk [1 ,4 ]
Schnabel, Renate B. [1 ,4 ]
Twerenbold, Raphael [1 ,4 ]
Magnussen, Christina [1 ,4 ]
Kirchhof, Paulus [1 ,4 ]
Blankenberg, Stefan [1 ,4 ]
Neumann, Johannes [1 ,4 ]
Schrage, Benedikt [1 ,4 ]
机构
[1] Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Martinistr 52, D-20251 Hamburg, Germany
[2] Univ Hosp Hamburg Eppendorf, Inst Appl Med Informat, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Dept Neurophysiol & Pathophysiol, Hamburg, Germany
[4] German Ctr Cardiovasc Res DZHK, Partner Site Hamburg Kiel Lubeck, Hamburg, Germany
来源
ESC HEART FAILURE | 2023年 / 10卷 / 02期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Heart failure; Screening; Pragmatic; Population; REDUCED EJECTION FRACTION; RISK;
D O I
10.1002/ehf2.14263
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsWe aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and resultsThis study was conducted within the Hamburg-City-Health-Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45-75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. ConclusionsUsing a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time-consuming input. This could help to alleviate the underdiagnosis of heart failure.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [41] Electrocardiogram lead selection for intelligent screening of patients with systolic heart failure
    Yu-An Chiou
    Jhen-Yang Syu
    Sz-Ying Wu
    Lian-Yu Lin
    Li Tzu Yi
    Ting-Tse Lin
    Shien-Fong Lin
    Scientific Reports, 11
  • [42] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [43] Electrocardiogram-based biometrics for user identification - Using your heartbeat as a digital key.
    Mitchell, Andrew R. J.
    Ahlert, Daniel
    Brown, Chris
    Birge, Max
    Gibbs, Austin
    JOURNAL OF ELECTROCARDIOLOGY, 2023, 80 : 1 - 6
  • [44] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [45] Electrocardiogram signal classification using VGGNet: a neural network based classification model
    Goswami A.D.
    Bhavekar G.S.
    Chafle P.V.
    International Journal of Information Technology, 2023, 15 (1) : 119 - 128
  • [46] Heart Rate Monitoring System Using Feature Extraction in Electrocardiogram Signal by Convolutional Neural Network
    Chen, Hsing-Chung
    Shouryadhar, Karamsetty
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 384 - 388
  • [47] Screening for heart failure in the permanently paced population
    Nikitin, NP
    Thackray, SDR
    Witte, KKA
    Anderson, A
    Clark, AL
    Cooklin, MC
    Cleland, JGF
    EUROPEAN HEART JOURNAL, 2001, 22 : 303 - 303
  • [48] Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection
    Ravelo-Garcia, Antonio G.
    Navarro-Mesa, Juan L.
    Casanova-Blancas, Ubay
    Martin-Gonzalez, Sofia
    Quintana-Morales, Pedro
    Guerra-Moreno, Ivan
    Canino-Rodriguez, Jose M.
    Hernandez-Perez, Eduardo
    ENTROPY, 2015, 17 (03): : 914 - 927
  • [49] Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method
    Thomas, Robert Joseph
    Mietus, Joseph E.
    Peng, Chung-Kang
    Gilmartin, Geoffrey
    Daly, Robert W.
    Goldberger, Ary L.
    Gottlieb, Daniel J.
    SLEEP, 2007, 30 (12) : 1756 - 1769
  • [50] Electrocardiogram-based emotion recognition system using empirical mode decomposition and discrete Fourier transform
    Jerritta, S.
    Murugappan, M.
    Wan, Khairunizam
    Yaacob, Sazali
    EXPERT SYSTEMS, 2014, 31 (02) : 110 - 120