Pragmatic screening for heart failure in the general population using an electrocardiogram-based neural network

被引:2
|
作者
Surendra, Kishore [1 ]
Nuernberg, Sylvia [2 ]
Bremer, Jan P. [1 ,3 ]
Knorr, Marius S. [1 ,3 ]
Ueckert, Frank [2 ]
Wenzel, Jan Per [1 ]
Kellen, Ramona Bei Der [1 ]
Westermann, Dirk [1 ,4 ]
Schnabel, Renate B. [1 ,4 ]
Twerenbold, Raphael [1 ,4 ]
Magnussen, Christina [1 ,4 ]
Kirchhof, Paulus [1 ,4 ]
Blankenberg, Stefan [1 ,4 ]
Neumann, Johannes [1 ,4 ]
Schrage, Benedikt [1 ,4 ]
机构
[1] Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Martinistr 52, D-20251 Hamburg, Germany
[2] Univ Hosp Hamburg Eppendorf, Inst Appl Med Informat, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Dept Neurophysiol & Pathophysiol, Hamburg, Germany
[4] German Ctr Cardiovasc Res DZHK, Partner Site Hamburg Kiel Lubeck, Hamburg, Germany
来源
ESC HEART FAILURE | 2023年 / 10卷 / 02期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Heart failure; Screening; Pragmatic; Population; REDUCED EJECTION FRACTION; RISK;
D O I
10.1002/ehf2.14263
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsWe aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and resultsThis study was conducted within the Hamburg-City-Health-Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45-75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. ConclusionsUsing a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time-consuming input. This could help to alleviate the underdiagnosis of heart failure.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [21] Cardiac allograft rejection detection using electrocardiogram-based analyses.
    Domitrovich, PP
    Rogers, JG
    Ewald, GA
    Stein, PK
    Rottman, JN
    Kleiger, RE
    TRANSPLANTATION, 2000, 69 (08) : S230 - S230
  • [22] Screening for Peripheral Vascular Stiffness in Lipedema Patients by Automatic Electrocardiogram-Based Oscillometric Detection
    Mahlmann, Adrian
    Khorzom, Yazan
    Behrendt, Christian-Alexander
    Leip, Jennifer Lynne
    Bachler, Martin
    Wassertheurer, Siegfried
    Elzanaty, Nesma
    Ghazy, Tamer
    SENSORS, 2024, 24 (05)
  • [23] Predicting heart failure using deep neural network
    Le, Minh Tuan
    Vo, Minh Thanh
    Mai, Linh
    Dao, Son V. T.
    PROCEEDINGS OF 202013TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC 2020), 2020, : 221 - 225
  • [24] Classic electrocardiogram-based and mobile technology derived approaches to heart rate variability are not equivalent
    Guzik, Przemyslaw
    Piekos, Caroline
    Pierog, Olivia
    Fenech, Naiman
    Krauze, Tomasz
    Piskorski, Jaroslaw
    Wykretowicz, Andrzej
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 258 : 154 - 156
  • [25] Electrocardiogram-based deep learning to predict mortality in paediatric and adult congenital heart disease
    Mayourian, Joshua
    El-Bokl, Amr
    Lukyanenko, Platon
    La Cava, William G.
    Geva, Tal
    Valente, Anne Marie
    Triedman, John K.
    Ghelani, Sunil J.
    EUROPEAN HEART JOURNAL, 2024, 46 (09) : 856 - 868
  • [26] Testing the performance of an electrocardiogram-based sleep staging algorithm using reflective photoplethysmography data in a sleep disordered population
    Wulterkens, B. M.
    van Gilst, M. M.
    Fonseca, P.
    Radha, M.
    Ross, M.
    Moreau, A.
    Cerny, A.
    Anderer, P.
    Long, X.
    van Dijk, J. P.
    Overeem, S.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 89 - 90
  • [27] Electrocardiogram Signal Classification in the Diagnosis of Heart Disease Based on RBF Neural Network
    Fang, Yan
    Shi, Jianshe
    Huang, Yifeng
    Zeng, Taisheng
    Ye, Yuguang
    Su, Lianta
    Zhu, Daxin
    Huang, Jianlong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [28] An Electrocardiogram-Based Driver Stress Detection Scheme Using Ensembled Multiscale Classifier
    Wei, Yang
    Wu, Chung Kit
    Tsang, Kim-Fung
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5217 - 5228
  • [29] Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation
    Zhang, Xu
    Liu, Qifeng
    He, Dong
    Suo, Hui
    Zhao, Chun
    SENSORS, 2023, 23 (22)
  • [30] MACHINE LEARNING CLASSIFICATION OF CORONARY HEART SYNDROME BASED ON ELECTROCARDIOGRAM IMAGE USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM
    Fajar, Rifaldy
    Selena, Maria
    Alorra, Zoya
    JOURNAL OF HYPERTENSION, 2023, 41 : E371 - E372