Pragmatic screening for heart failure in the general population using an electrocardiogram-based neural network

被引:2
|
作者
Surendra, Kishore [1 ]
Nuernberg, Sylvia [2 ]
Bremer, Jan P. [1 ,3 ]
Knorr, Marius S. [1 ,3 ]
Ueckert, Frank [2 ]
Wenzel, Jan Per [1 ]
Kellen, Ramona Bei Der [1 ]
Westermann, Dirk [1 ,4 ]
Schnabel, Renate B. [1 ,4 ]
Twerenbold, Raphael [1 ,4 ]
Magnussen, Christina [1 ,4 ]
Kirchhof, Paulus [1 ,4 ]
Blankenberg, Stefan [1 ,4 ]
Neumann, Johannes [1 ,4 ]
Schrage, Benedikt [1 ,4 ]
机构
[1] Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Martinistr 52, D-20251 Hamburg, Germany
[2] Univ Hosp Hamburg Eppendorf, Inst Appl Med Informat, Hamburg, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Dept Neurophysiol & Pathophysiol, Hamburg, Germany
[4] German Ctr Cardiovasc Res DZHK, Partner Site Hamburg Kiel Lubeck, Hamburg, Germany
来源
ESC HEART FAILURE | 2023年 / 10卷 / 02期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Heart failure; Screening; Pragmatic; Population; REDUCED EJECTION FRACTION; RISK;
D O I
10.1002/ehf2.14263
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsWe aim to develop a pragmatic screening tool for heart failure at the general population level. Methods and resultsThis study was conducted within the Hamburg-City-Health-Study, an ongoing, prospective, observational study enrolling randomly selected inhabitants of the city of Hamburg aged 45-75 years. Heart failure was diagnosed per current guidelines. Using only digital electrocardiograms (ECGs), a convolutional neural network (CNN) was built to discriminate participants with and without heart failure. As comparisons, known risk variables for heart failure were fitted into a logistic regression model and a random forest classifier. Of the 5299 individuals included into this study, 318 individuals (6.0%) had heart failure. Using only the digital ECGs instead of several risk variables as an input, the CNN provided a comparable predictive accuracy for heart failure versus the logistic regression model and the random forest classifier [area under the curve (AUC) of 0.75, a sensitivity of 0.67 and a specificity of 0.69 for the CNN; AUC 0.77, a sensitivity of 0.63 and a specificity of 0.76 for the logistic regression; AUC 0.79, a sensitivity of 0.67 and a specificity of 0.72 for the random forest classifier]. ConclusionsUsing a CNN build on digital ECGs only and requiring no additional input, we derived a screening tool for heart failure in the general population. This could be perfectly embedded into clinical routine of general practitioners, as it builds on an already established diagnostic tool and does not require additional, time-consuming input. This could help to alleviate the underdiagnosis of heart failure.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [1] Electrocardiogram-Based Driver Authentication Using Autocorrelation and Convolutional Neural Network Techniques
    Ku, Giwon
    Choi, Choeljun
    Yang, Chulseung
    Jeong, Jiseong
    Kim, Pilkyo
    Park, Sangyong
    Jung, Taekeon
    Kim, Jinsul
    ELECTRONICS, 2024, 13 (24):
  • [2] Electrocardiogram-Based Artificial Intelligence Predicts Incident Heart Failure
    Khurshid, Shaan
    Friedman, Samuel
    Kany, Shinwan
    Cunningham, Jonathan
    Lau, Emily
    Pipilas, Daniel
    Al-Alusi, Mostafa
    Ramo, Joel
    Pirruccello, James
    Nauffal, Victor
    Reeder, Christopher
    Singh, Pulkit
    CIRCULATION, 2023, 148
  • [3] Screening for cardiac allograft rejection among heart transplant recipients using an electrocardiogram-based deep learning model
    Adedinsewo, D.
    Hardway, H.
    Morales-Lara, C. A.
    Johnson, P.
    Douglass, E.
    Dangott, B.
    Nakhleh, R.
    Narula, T.
    Patel, P.
    Goswami, R.
    Heckman, A.
    Lopez-Jimenez, F.
    Noseworthy, P.
    Yamani, M.
    Carter, R.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1020 - 1020
  • [4] Classification of Atrial Fibrillation and Congestive Heart Failure Using Convolutional Neural Network with Electrocardiogram
    Fu'adah, Yunendah Nur
    Lim, Ki Moo
    ELECTRONICS, 2022, 11 (15)
  • [5] Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis
    Li, Xin-Mu
    Gao, Xin-Yi
    Tse, Gary
    Hong, Shen-Da
    Chen, Kang-Yin
    Li, Guang-Ping
    Liu, Tong
    JOURNAL OF GERIATRIC CARDIOLOGY, 2022, 19 (12) : 970 - 980
  • [6] Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis
    Xin-Mu LI
    Xin-Yi GAO
    Gary Tse
    Shen-Da HONG
    Kang-Yin CHEN
    Guang-Ping LI
    Tong LIU
    Journal of Geriatric Cardiology, 2022, 19 (12) : 970 - 980
  • [7] Electrocardiogram-based sleep analysis for sleep apnea screening and diagnosis
    Yan Ma
    Shuchen Sun
    Ming Zhang
    Dan Guo
    Arron Runzhou Liu
    Yulin Wei
    Chung-Kang Peng
    Sleep and Breathing, 2020, 24 : 231 - 240
  • [8] Electrocardiogram-based sleep analysis for sleep apnea screening and diagnosis
    Ma, Yan
    Sun, Shuchen
    Zhang, Ming
    Guo, Dan
    Liu, Arron Runzhou
    Wei, Yulin
    Peng, Chung-Kang
    SLEEP AND BREATHING, 2020, 24 (01) : 231 - 240
  • [9] Variability in interpretation of the electrocardiogram in young athletes: an unrecognized obstacle for electrocardiogram-based screening protocols
    Berte, Benjamin
    Duytschaever, Mattias
    Elices, Juliana
    Kataria, Vikas
    Timmers, Liesbeth
    Van Heuverswyn, Frederic
    Stroobandt, Roland
    De Neve, Jan
    Watteyne, Karel
    Vandensteen, Elke
    Vandekerckhove, Yves
    Tavernier, Rene
    EUROPACE, 2015, 17 (09): : 1435 - 1440
  • [10] A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction
    Butler, Liam
    Karabayir, Ibrahim
    Kitzman, Dalane W.
    Alonso, Alvaro
    Tison, Geoffrey H.
    Chen, Lin Yee
    Chang, Patricia P.
    Clifford, Gari
    Soliman, Elsayed Z.
    Akbilgic, Oguz
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (06): : 183 - 190