TOTAL VERTEX PRODUCT IRREGULARITY STRENGTH OF GRAPHS

被引:0
|
作者
Anholcer, Marcin [1 ]
Emadi, Azam Sadat [2 ]
Mojdeh, Doost Ali [2 ]
机构
[1] Poznan Univ Econ & Business, Inst Informat & Quantitat Econ, Al Niepodleglosci 10, PL-61875 Poznan, Poland
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
关键词
product-irregular labeling; total vertex product irregularity strength; vertex-distinguishing labeling;
D O I
10.7151/dmgt.2495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a simple graph G. We call a labeling w : E(G) U V (G)-+ 2, ... , s} (total vertex) product-irregular, if all product degrees pdG(v) induced by this labeling are distinct, where pdG(v) = w(v) x pi e,v w(e). The strength of w is s, the maximum number used to label the members of E(G) U V (G). The minimum value of s that allows some irregular labeling called the total vertex product irregularity strength and denoted tvps(G). provide some general bounds, as well as exact values for chosen families graphs.
引用
收藏
页码:1261 / 1276
页数:16
相关论文
共 50 条
  • [31] On total vertex irregularity strength of generalized uniform cactus chain graphs with pendant vertices
    Rosyida, Isnaini
    Mulyono
    Indriati, Diari
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (06): : 1369 - 1380
  • [32] The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges
    Indriati, Diari
    Widodo
    Wijayanti, Indah E.
    Sugeng, Kiki A.
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 14 - 26
  • [33] Total vertex irregularity strength of certain equitable complete m-partite graphs
    Guo, Jing
    Chen, Xiang'en
    Wang, Zhiwen
    Yao, Bing
    ARS COMBINATORIA, 2015, 123 : 407 - 418
  • [34] On The Total Irregularity Strength of Regular Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2015, 47 (03) : 281 - 295
  • [35] Computing the total H-irregularity strength of edge comb product of graphs
    Wahyujati, Mohamad Fahruli
    Susanti, Yeni
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 177 - 190
  • [36] On total vertex irregularity strength of honeycomb derived networks
    Annamma, V.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 159 - 165
  • [37] Counterexamples to the total vertex irregularity strength's conjectures
    Susanto, Faisal
    Simanjuntak, Rinovia
    Baskoro, Edy Tri
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 159 - 165
  • [38] Total Face Irregularity Strength of Certain Graphs
    Emilet D.A.
    Paul D.
    Jayagopal R.
    Arockiaraj M.
    Mathematical Problems in Engineering, 2024, 2024
  • [39] On the total edge irregularity strength of zigzag graphs
    Ahmad, Ali
    Siddiqui, Muhammad Kamran
    Afzal, Deeba
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 141 - 149
  • [40] Total edge irregularity strength of accordion graphs
    Siddiqui, Muhammad Kamran
    Afzal, Deeba
    Faisal, Muhammad Ramzan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 534 - 544