Total vertex irregularity strength of certain equitable complete m-partite graphs

被引:0
|
作者
Guo, Jing [1 ]
Chen, Xiang'en [1 ]
Wang, Zhiwen [2 ]
Yao, Bing [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
vertex irregular total k-labeling; weight; total vertex irregularity strength; equitable complete 3-partite graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple undirected graph G with vertex set V and edge set E, a total k labeling lambda : V boolean OR E -> {1,2, ..., k} is called a vertex irregular total k labeling of G if for every two distinct vertices x and y of G their weights wt(x) and wt(y) are distinct where the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k for which the graph G has a vertex irregular total k-labeling. The complete m partite graph on n vertices in which each part has either left perpendicularn/mleft perpendicular or inverted right perpendicularn/minverted right perpendicula r vertices is denoted by T-m,T-n. The total vertex irregularity strength of some equitable complete m partite graphs, namely, T-m,T-m+1, T-m,T-m+2, T-m,T-2m, T-m,T-2m+1, T-m,T-3m-1 (m >= 4), T-m,T-n (n = 3m + r,r = 1,2, ..., m - 1), and equitable complete 3-partite graphs have been studied in this paper.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [1] ON THE DECOMPOSITION OF KN INTO COMPLETE M-PARTITE GRAPHS
    HUANG, QX
    JOURNAL OF GRAPH THEORY, 1991, 15 (01) : 1 - 6
  • [2] Total vertex irregularity strength of certain classes of unicyclic graphs
    Ahmad, Ali
    Baca, Martin
    Bashir, Yasir
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (02): : 147 - 152
  • [3] ON TOTAL VERTEX IRREGULARITY STRENGTH OF GRAPHS
    Packiam, K. Muthu Guru
    Kathiresan, Kumarappan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 39 - 45
  • [5] Modular total vertex irregularity strength of graphs
    Ali, Gohar
    Baca, Martin
    Lascsakova, Marcela
    Semanicova-Fenovcikova, Andrea
    ALoqaily, Ahmad
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (04): : 7662 - 7671
  • [6] TOTAL VERTEX IRREGULARITY STRENGTH OF INTERVAL GRAPHS
    Rana, Akul
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 96 - 102
  • [7] TOTAL VERTEX PRODUCT IRREGULARITY STRENGTH OF GRAPHS
    Anholcer, Marcin
    Emadi, Azam Sadat
    Mojdeh, Doost Ali
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1261 - 1276
  • [8] Total Vertex Irregularity Strength of Dense Graphs
    Majerski, P.
    Przybylo, J.
    JOURNAL OF GRAPH THEORY, 2014, 76 (01) : 34 - 41
  • [9] Complete m-partite decompositions of complete multigraphs
    Huang, QX
    ARS COMBINATORIA, 1996, 43 : 232 - 234
  • [10] Packing 5-cycles into balanced complete m-partite graphs for odd m
    Ming-Hway Huang
    Chin-Mei Fu
    Hung-Lin Fu
    Journal of Combinatorial Optimization, 2007, 14 : 323 - 329