Refined Bounds on the Number of Eulerian Tours in Undirected Graphs

被引:0
|
作者
Punzi, Giulia [1 ,2 ]
Conte, Alessio [1 ]
Grossi, Roberto [1 ]
Rizzi, Romeo [3 ]
机构
[1] Univ Pisa, Dept Comp Sci, Pisa, Italy
[2] Natl Inst Informat, Tokyo, Japan
[3] Univ Verona, Dept Comp Sci, Verona, Italy
基金
日本学术振兴会;
关键词
Euler tours; Graph theory; Graph enumeration; Combinatorial bounds; ORIENTATIONS;
D O I
10.1007/s00453-023-01162-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an undirected multigraph G = (V, E) with no self-loops, and one of its nodes s. V, we consider the #P-complete problem of counting the number ET (e) s ( G) of its Eulerian tours starting and ending at node s. We provide lower and upper bounds on the size of ET (e) s (G). Namely, let d( v) denote the degree of a node v. V; we show that max{L (e) 1, L (e) 2} = |ET (e) s (G)| = d(s) v.V (d( v) - 1)!! where L (e) 1 = (d(s) - 1)!! v.V\s (d(v) - 2)!! and L (e) 2 = 21-|V|+| E|. We also consider the notion of node-distinct Eulerian tours. Indeed, the classical Eulerian tours are edge-distinct sequences. Node-distinct Eulerian tours, denoted ET (n) s (G), should instead be different as node sequences. Let (u) be the number of distinct neighbors of a node u, D. E be the set of distinct edges in the multigraph G, and m(e) for an edge e. E be its multiplicity (i.e. |E| = e.D m(e)). We prove that max{L (n) 1, L (n) 2, L (n) 3} = | ET (n) s (G)| = d(s) v.V (d(v) - 1)!! center dot e. D m(e)!-1, where L (n) 1 = L (e) 1 /( e. D m(e)!), L (n) 2 = ((s) - 1)!! v.V\s ((v) - 2)!!, and L (n) 3 = 21-|V|+| D|. We also extend all of our results to graphs having self-loops.
引用
下载
收藏
页码:194 / 217
页数:24
相关论文
共 50 条
  • [31] Bounds on the domination number in oriented graphs
    Blidia, Mostafa
    Ould-Rabah, Lyes
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 231 - 241
  • [32] More bounds for the Grundy number of graphs
    Tang, Zixing
    Wu, Baoyindureng
    Hu, Lin
    Zaker, Manoucheher
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 580 - 589
  • [33] Bounds on the forcing domination number of graphs
    Karami, H.
    Sheikholeslami, S. M.
    Toomanian, M.
    UTILITAS MATHEMATICA, 2010, 83 : 171 - 178
  • [34] Unified bounds for the independence number of graphs
    Zhou, Jiang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023,
  • [35] More bounds for the Grundy number of graphs
    Zixing Tang
    Baoyindureng Wu
    Lin Hu
    Manoucheher Zaker
    Journal of Combinatorial Optimization, 2017, 33 : 580 - 589
  • [36] Lower bounds on the obstacle number of graphs
    Mukkamala, Padmini
    Pach, Janos
    Palvoelgyi, Doemoetoer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [37] New bounds for the chromatic number of graphs
    Zaker, Manouchehr
    JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 110 - 122
  • [38] Bicliques in Graphs I: Bounds on Their Number
    Erich Prisner
    Combinatorica, 2000, 20 : 109 - 117
  • [39] BOUNDS ON THE DOMINATION NUMBER OF PERMUTATION GRAPHS
    Gu, Weizhen
    Wash, Kirsti
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 205 - 217
  • [40] Bounds for the independence number of critical graphs
    Brinkmann, G
    Choudum, SA
    Grünewald, S
    Steffen, E
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 137 - 140