Refined Bounds on the Number of Eulerian Tours in Undirected Graphs

被引:0
|
作者
Punzi, Giulia [1 ,2 ]
Conte, Alessio [1 ]
Grossi, Roberto [1 ]
Rizzi, Romeo [3 ]
机构
[1] Univ Pisa, Dept Comp Sci, Pisa, Italy
[2] Natl Inst Informat, Tokyo, Japan
[3] Univ Verona, Dept Comp Sci, Verona, Italy
基金
日本学术振兴会;
关键词
Euler tours; Graph theory; Graph enumeration; Combinatorial bounds; ORIENTATIONS;
D O I
10.1007/s00453-023-01162-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an undirected multigraph G = (V, E) with no self-loops, and one of its nodes s. V, we consider the #P-complete problem of counting the number ET (e) s ( G) of its Eulerian tours starting and ending at node s. We provide lower and upper bounds on the size of ET (e) s (G). Namely, let d( v) denote the degree of a node v. V; we show that max{L (e) 1, L (e) 2} = |ET (e) s (G)| = d(s) v.V (d( v) - 1)!! where L (e) 1 = (d(s) - 1)!! v.V\s (d(v) - 2)!! and L (e) 2 = 21-|V|+| E|. We also consider the notion of node-distinct Eulerian tours. Indeed, the classical Eulerian tours are edge-distinct sequences. Node-distinct Eulerian tours, denoted ET (n) s (G), should instead be different as node sequences. Let (u) be the number of distinct neighbors of a node u, D. E be the set of distinct edges in the multigraph G, and m(e) for an edge e. E be its multiplicity (i.e. |E| = e.D m(e)). We prove that max{L (n) 1, L (n) 2, L (n) 3} = | ET (n) s (G)| = d(s) v.V (d(v) - 1)!! center dot e. D m(e)!-1, where L (n) 1 = L (e) 1 /( e. D m(e)!), L (n) 2 = ((s) - 1)!! v.V\s ((v) - 2)!!, and L (n) 3 = 21-|V|+| D|. We also extend all of our results to graphs having self-loops.
引用
下载
收藏
页码:194 / 217
页数:24
相关论文
共 50 条
  • [21] Asymptotic behavior of the number of Eulerian orientations of graphs
    M. I. Isaev
    Mathematical Notes, 2013, 93 : 816 - 829
  • [22] Asymptotic behavior of the number of Eulerian orientations of graphs
    Isaev, M. I.
    MATHEMATICAL NOTES, 2013, 93 (5-6) : 816 - 829
  • [24] UPPER ORIENTED CHROMATIC NUMBER OF UNDIRECTED GRAPHS AND ORIENTED COLORINGS OF PRODUCT GRAPHS
    Sopena, Eric
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 517 - 533
  • [25] Distributed algebraic connectivity estimation for undirected graphs with upper and lower bounds
    Aragues, Rosario
    Shi, Guodong
    Dimarogonas, Dimos V.
    Saguees, Carlos
    Johansson, Karl Henrik
    Mezouar, Youcef
    AUTOMATICA, 2014, 50 (12) : 3253 - 3259
  • [26] Undirected simple connected graphs with minimum number of spanning trees
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3074 - 3082
  • [27] Bicliques in graphs I: Bounds on their number
    Prisner, E
    COMBINATORICA, 2000, 20 (01) : 109 - 117
  • [28] Bounds on radio mean number of graphs
    Saraswathi, Meera
    Meera, K. N.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (02) : 1691 - 1702
  • [29] BOUNDS FOR THE GAMMA-NUMBER OF GRAPHS
    Ichishima, Rikio
    Oshima, Akito
    UTILITAS MATHEMATICA, 2018, 109 : 313 - 325
  • [30] Bounds on the domination number of Kneser graphs
    Ostergard, Patric R. J.
    Shao, Zehui
    Xu, Xiaodong
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 197 - 205