Refined Bounds on the Number of Eulerian Tours in Undirected Graphs

被引:0
|
作者
Punzi, Giulia [1 ,2 ]
Conte, Alessio [1 ]
Grossi, Roberto [1 ]
Rizzi, Romeo [3 ]
机构
[1] Univ Pisa, Dept Comp Sci, Pisa, Italy
[2] Natl Inst Informat, Tokyo, Japan
[3] Univ Verona, Dept Comp Sci, Verona, Italy
基金
日本学术振兴会;
关键词
Euler tours; Graph theory; Graph enumeration; Combinatorial bounds; ORIENTATIONS;
D O I
10.1007/s00453-023-01162-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an undirected multigraph G = (V, E) with no self-loops, and one of its nodes s. V, we consider the #P-complete problem of counting the number ET (e) s ( G) of its Eulerian tours starting and ending at node s. We provide lower and upper bounds on the size of ET (e) s (G). Namely, let d( v) denote the degree of a node v. V; we show that max{L (e) 1, L (e) 2} = |ET (e) s (G)| = d(s) v.V (d( v) - 1)!! where L (e) 1 = (d(s) - 1)!! v.V\s (d(v) - 2)!! and L (e) 2 = 21-|V|+| E|. We also consider the notion of node-distinct Eulerian tours. Indeed, the classical Eulerian tours are edge-distinct sequences. Node-distinct Eulerian tours, denoted ET (n) s (G), should instead be different as node sequences. Let (u) be the number of distinct neighbors of a node u, D. E be the set of distinct edges in the multigraph G, and m(e) for an edge e. E be its multiplicity (i.e. |E| = e.D m(e)). We prove that max{L (n) 1, L (n) 2, L (n) 3} = | ET (n) s (G)| = d(s) v.V (d(v) - 1)!! center dot e. D m(e)!-1, where L (n) 1 = L (e) 1 /( e. D m(e)!), L (n) 2 = ((s) - 1)!! v.V\s ((v) - 2)!!, and L (n) 3 = 21-|V|+| D|. We also extend all of our results to graphs having self-loops.
引用
收藏
页码:194 / 217
页数:24
相关论文
共 50 条
  • [1] Refined Bounds on the Number of Eulerian Tours in Undirected Graphs
    Giulia Punzi
    Alessio Conte
    Roberto Grossi
    Romeo Rizzi
    [J]. Algorithmica, 2024, 86 : 194 - 217
  • [2] Bounding the Number of Eulerian Tours in Undirected Graphs
    Punzi, Giulia
    [J]. COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 368 - 380
  • [4] Multi-Eulerian tours of directed graphs
    Farrell, Matthew
    Levine, Lionel
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [5] BOUNDS ON THE NUMBER OF EULERIAN ORIENTATIONS
    SCHRIJVER, A
    [J]. COMBINATORICA, 1983, 3 (3-4) : 375 - 380
  • [6] The linear guessing number of undirected graphs
    Chang, Gerard Jennhwa
    Feng, Keqin
    Huang, Liang-Hao
    Lu, Mei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 119 - 131
  • [7] Bounds on the number of knight's tours
    Kyek, O
    Parberry, I
    Wegener, I
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 74 (02) : 171 - 181
  • [8] The Complexity of Counting Eulerian Tours in 4-regular Graphs
    Ge, Qi
    Stefankovic, Daniel
    [J]. ALGORITHMICA, 2012, 63 (03) : 588 - 601
  • [9] COMPATIBLE EULER TOURS FOR TRANSITION-SYSTEMS IN EULERIAN GRAPHS
    JACKSON, B
    [J]. DISCRETE MATHEMATICS, 1987, 66 (1-2) : 127 - 131
  • [10] The Complexity of Counting Eulerian Tours in 4-Regular Graphs
    Ge, Qi
    Stefankovic, Daniel
    [J]. LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 638 - 649