Emergence of cosmic space with Barrow entropy, in non-equilibrium thermodynamic conditions

被引:2
|
作者
Krishnan, P. Nandhida
Mathew, Titus K. [1 ,2 ,3 ]
机构
[1] Cochin Univ Sci & Technol, Dept Phys, Cochin 682022, Kerala, India
[2] Inter Univ Ctr Kerala Legacy Astron & Math, Trichur, India
[3] CUSAT, Ctr Particle Phys, Kochi, India
来源
关键词
Barrow entropy; Emergence of cosmic space; Non-equilibrium thermodynamics; Entropy maximization; BLACK-HOLES; DARK ENERGY; 1ST LAW; EQUATIONS; DIMENSION; CONSTANT; HORIZONS; GRAVITY;
D O I
10.1016/j.dark.2023.101283
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, Barrow proposed a modified area-entropy relation S = (A/A0)1+ increment /2, where the exponent increment , ranges 0 < increment < 1, by taking account of the quantum gravitational deformation effects to the black hole's surface. In recent literature, this horizon entropy has been adopted to the cosmological context. Following this, we obtained the law of emergence, which describes the dynamics of the universe, with Barrow entropy in the context of equilibrium thermodynamics (unified first law and Clausius relation). However, when considering Barrow entropy (a non-Bekenstein entropy), an additional entropy generation arises owing to the non-equilibrium thermodynamics. The corresponding field equation bears an effective coupling strength, which connects the geometry with an effective energy- momentum tensor. We derived the law of emergence by using the non-equilibrium description of the thermodynamic principle, which accounts for the addition entropy production term. We compared it with that of the equilibrium description. In addition, we checked the consistency of the modified law in the context of entropy maximization. Interestingly, we found that the non-equilibrium entropy generation rate decreases gradually, and the universe evolves to an equilibrium state of maximum entropy corresponding to the de Sitter epoch.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Non-equilibrium Dynamics, Thermalization and Entropy Production
    Hinrichsen, Haye
    Gogolin, Christian
    Janotta, Peter
    STATPHYS-KOLKATA VII, 2011, 297
  • [42] THE ENTROPY OF NON-EQUILIBRIUM IDEAL QUANTUM GAS
    LANDSBERG, PT
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1959, 74 (478): : 486 - 488
  • [43] A Perspective on Lindblad's Non-Equilibrium Entropy
    Aurell, Erik
    Kawai, Ryoichi
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2023, 30 (02):
  • [44] DISCUSSION OF ENTROPY CONCEPT IN NON-EQUILIBRIUM THERMODYNAMICS
    PRIGOGIN.I
    MEIXNER, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, S 26 : 213 - &
  • [45] Geometry and Symmetry in Non-equilibrium Thermodynamic Systems
    Sonnino, Giorgio
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2016), 2017, 1853
  • [46] Thermodynamic time asymmetry in non-equilibrium fluctuations
    Andrieux, D.
    Gaspard, P.
    Ciliberto, S.
    Garnier, N.
    Joubaud, S.
    Petrosyan, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [47] EXISTENCE OF THE THERMODYNAMIC LIMIT IN NON-EQUILIBRIUM SYSTEMS
    SUZUKI, M
    JOURNAL OF STATISTICAL PHYSICS, 1979, 20 (02) : 163 - 173
  • [48] NON-EQUILIBRIUM THERMODYNAMIC TREATMENT OF MITOCHONDRIAL PROCESSES
    WALZ, D
    STUCKI, JW
    EXPERIENTIA, 1980, 36 (06): : 735 - 735
  • [49] CONTACT TRANSFORMATIONS OF NON-EQUILIBRIUM THERMODYNAMIC HAMILTONIAN
    ETIM, E
    BASILI, C
    LETTERE AL NUOVO CIMENTO, 1979, 24 (01): : 29 - 32
  • [50] Information density, structure and entropy in equilibrium and non-equilibrium systems
    Zu, Mengjie
    Bupathy, Arunkumar
    Frenkel, Daan
    Sastry, Srikanth
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02):